Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 133
Filtrer
1.
Emerg Microbes Infect ; 13(1): 2399950, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39259213

RÉSUMÉ

ABSTRACTBetween 2018 and 2024, we conducted systematic whole-genome sequencing and phylogenomic analysis on 263 V. cholerae O1 isolates from cholera patients across four provinces in the Democratic Republic of Congo (North-Kivu, South-Kivu, Tanganyika, and Kasai Oriental). These isolates were classified into the AFR10d and AFR10e sublineages of AFR10 lineage, originating from the third wave of the seventh El Tor cholera pandemic (7PET). Compared to the strains analysed between 2014 and 2017, both sublineages had few genetic changes in the core genome but recent isolates (2022-2024) had significant CTX prophage rearrangement. AFR10e spread across all four provinces, while AFR10d appeared to be extinct by the end of 2020. Since 2022, most V. cholerae O1 isolates exhibited significant CTX prophage rearrangements, including a tandem repeat of an environmental satellite phage RS1 downstream the ctxB toxin gene of the CTX-Φ-3 prophage on the large chromosome, as well as two or more arrayed copies of an environmental pre-CTX-Φ prophage precursor on the small chromosome. We used Illumina data for mapping and coverage estimation to identify isolates with unique CTX-Φ genomic features. Gene localization was then determined on MinION-derived assemblies, revealing an organization similar to that of non-O1 V. cholerae isolates found in Asia (O139 VC1374, and environmental O4 VCE232), but never described in V. cholerae O1 El Tor from the third wave. In conclusion, while the core genome of AFR10d and AFR10e showed minimal changes, significant alterations in the CTX-Φ and pre-CTX-Φ prophage content and organization were identified in AFR10e from 2022 onwards.


Sujet(s)
Choléra , Épidémies de maladies , Prophages , Humains , Choléra/microbiologie , Choléra/épidémiologie , Toxine cholérique/génétique , République démocratique du Congo/épidémiologie , Évolution moléculaire , Génome bactérien , Phylogenèse , Prophages/génétique , Vibrio cholerae/génétique , Vibrio cholerae/virologie , Vibrio cholerae/isolement et purification , Vibrio cholerae/classification , Vibrio cholerae O1/génétique , Vibrio cholerae O1/virologie , Vibrio cholerae O1/isolement et purification , Séquençage du génome entier
2.
mBio ; : e0237724, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39315801

RÉSUMÉ

Much knowledge about bacteriophages has been obtained via genomics and metagenomics over the last decades. However, most studies dealing with prophage diversity have rarely conducted phage species delimitation (aspect 1) and have hardly integrated the population structure of the host (aspect 2). Yet, these two aspects are essential in assessing phage diversity. Here, we implemented an operational definition of phage species (clustering at 95% identity, 90% coverage) and integrated the host's population structure to understand prophage diversity better. Gathering the most extensive data set of Acinetobacter baumannii phages (4,152 prophages + 122 virulent phages, distributed in 46 countries in the world), we show that 91% (875 out of 963) of the prophage species have four or fewer prophages per species, and just five prophage species have more than 100 prophages. Most prophage species have a narrow host range and are geographically restricted; yet, very few have a broad host range being well spread in distant lineages of A. baumannii. These few broad host range prophage species are not only cosmopolitan but also the most abundant species. We also noted that polylysogens had very divergent prophages, belonging to different prophage species, and prophages can easily be gained and lost within the bacterial lineages. Finally, even with this extensive data set, the prophage diversity has not been fully grasped. Our study highlights how integrating the host population structure and a solid operational definition of phage species allows us to better appreciate phage diversity and its transmission dynamics. IMPORTANCE: Much knowledge about bacteriophages has been obtained via genomics and metagenomics over the last decades. However, most studies dealing with prophage diversity have rarely conducted phage species delimitation (aspect 1) and have hardly integrated the population structure of the host (aspect 2). Yet, these two aspects are essential in assessing phage diversity. Here, we implemented an operational definition of phage species (clustering at 95% identity, 90% coverage) and integrated the host's population structure to understand prophage diversity better. Gathering the most extensive data set of Acinetobacter baumannii phages, we show that most prophage species have four or fewer prophages per species, and just five prophage species have more than 100 prophages. Most prophage species have a narrow host range and are geographically restricted; yet, very few have a broad host range being well spread in distant lineages of A. baumannii. These few broad host range prophage species are cosmopolitan and the most abundant species. Prophages in the same bacterial genome are very divergent, and prophages can easily be gained and lost within the bacterial lineages. Finally, even with this extensive data set, the prophage diversity has not been fully grasped. This study shows how integrating the host population structure and clustering at the species level allows us to better appreciate phage diversity and its transmission dynamics.

3.
Diagn Microbiol Infect Dis ; 110(3): 116397, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39126826

RÉSUMÉ

Here, we characterize the complete genome sequence of Escherichia coli isolated from a newborn affected by bacterial meningitis in Italy. Genome of E. coli strain 1455 harbored a circular chromosome and two plasmids of 167.740-bp and 4.073-bp in length, respectively. E. coli 1455 belonged to the ST3, serotype O17:H18 and carried different determinants including resistance to B-lactams, tetracyclines, and quinolones. In addition, genome of E. coli strain 1455 harbored 5 integrated pro-phage regions mainly located in the chromosome, while most of the virulence factors associated to the invasiveness and clinical severity and different antimicrobial resistance determinants (blaTEM-1, tet(A) and qnrS1) were located in the 167-Kb plasmid. Taken together, our findings suggest a possible widespread of a virulence factors-carrying plasmid worldwide and highlight the importance of genomic characterization in the diffusion of public health threats.


Sujet(s)
Escherichia coli , Génome bactérien , Méningite à Escherichia coli , Plasmides , Facteurs de virulence , Nouveau-né , Italie , Humains , Escherichia coli/génétique , Escherichia coli/isolement et purification , Escherichia coli/pathogénicité , Escherichia coli/classification , Génome bactérien/génétique , Facteurs de virulence/génétique , Plasmides/génétique , Méningite à Escherichia coli/microbiologie , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Séquençage du génome entier , Méningite bactérienne/microbiologie , Sérogroupe , Tests de sensibilité microbienne , Génomique
4.
BMC Genomics ; 25(1): 691, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39004696

RÉSUMÉ

BACKGROUND: Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS: Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS: The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.


Sujet(s)
Erysipelothrix , Régions arctiques , Erysipelothrix/génétique , Erysipelothrix/pathogénicité , Erysipelothrix/isolement et purification , Canada , Animaux , Virulence/génétique , Génomique , Génome bactérien , Phylogenèse , Infections à Erysipelothrix/microbiologie , Facteurs de virulence/génétique , Étude d'association pangénomique , Ilots génomiques
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38991993

RÉSUMÉ

AIMS: Temperate phages insert their genome into the host's chromosome. As prophages, they remain latent in the genome until an induction event leads to lytic phage production. When this occurs in a starter culture that has been added to food fermentation, this can impair the fermentation success. This study aimed to analyze prophage inducibility in the Latilactobacillus curvatus TMW 1.591 strain during meat fermentation and investigate whether an induction signal before cryopreservation is maintained during storage and can lead to phage-induced lysis after culture activation. METHODS AND RESULTS: A prophage-free isogenic derivative of the model starter organism, L. curvatus TMW 1.591, was developed as a negative control (L. curvatus TMW 1.2406). Raw meat fermentation was performed with the wild-type (WT) and phage-cured strains. The WT strain produced high numbers of phages (5.2 ± 1.8 × 107 plaque-forming units g-1) in the meat batter. However, the prophage did not significantly affect the meat fermentation process. Induction experiments suggested an acidic environment as a potential trigger for prophage induction. Phage induction by ultraviolet light before strain cryopreservation remains functional for at least 10 weeks of storage. CONCLUSIONS: Intact prophages are active during meat fermentation. However, in this study, this has no measurable consequences for fermentation, suggesting a high resiliency of meat fermentation against phages. Inadequate handling of lysogenic starter strains, even before preservation, can lead to phage introduction into food fermentation and unintended host lysis.


Sujet(s)
Bactériophages , Fermentation , Microbiologie alimentaire , Produits carnés , Prophages , Produits carnés/microbiologie , Prophages/génétique , Bactériophages/génétique , Bactériophages/physiologie , Animaux , Bacillaceae/virologie , Bacillaceae/génétique , Bacillaceae/métabolisme , Activation virale
6.
Microbiol Resour Announc ; 13(8): e0023924, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-38953337

RÉSUMÉ

The bacterium Brochothrix thermosphacta is a known muscle food spoiler. Here, the complete genome sequence of the B. thermosphacta type strain, DSM 20171, is reported. Prediction of prophages and genomic islands reveals an unsuspected diversity in this bacterial species that deserves further investigation.

7.
BMC Genomics ; 25(1): 549, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824509

RÉSUMÉ

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.


Sujet(s)
Génome bactérien , Génomique , Phylogenèse , Prophages , Treponema , Prophages/génétique , Treponema/génétique , Treponema/virologie , Génomique/méthodes , Biologie informatique/méthodes , Génome viral , Bactériophages/génétique , Bactériophages/classification
8.
PeerJ ; 12: e17306, 2024.
Article de Anglais | MEDLINE | ID: mdl-38784399

RÉSUMÉ

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Sujet(s)
Génome bactérien , Génomique , Typage par séquençage multilocus , Salmonella enterica , Brésil , Salmonella enterica/génétique , Salmonella enterica/isolement et purification , Génome bactérien/génétique , Humains , Animaux , Salmonelloses/microbiologie , Salmonelloses/épidémiologie , Sérogroupe , Microbiologie alimentaire , Phylogenèse , Salmonelloses animales/microbiologie , Salmonelloses animales/épidémiologie
9.
Antibiotics (Basel) ; 13(5)2024 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-38786130

RÉSUMÉ

Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton-Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This "flipped" region comprised about 1,083,000 bp, or more than a third of the strain's genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE.

10.
Front Microbiol ; 15: 1335997, 2024.
Article de Anglais | MEDLINE | ID: mdl-38655087

RÉSUMÉ

Introduction: The Acinetobacter calcoaceticus-Acinetobacter baumannii complex, or Acb complex, consists of six species: Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter seifertii, and Acinetobacter lactucae. A. baumannii is the most clinically significant of these species and is frequently related to healthcare-associated infections (HCAIs). Clustered regularly interspaced short palindromic repeat (CRISPR) arrays and associated genes (cas) constitute bacterial adaptive immune systems and function as variable genetic elements. This study aimed to conduct a genomic analysis of Acb complex genomes available in databases to describe and characterize CRISPR systems and cas genes. Methods: Acb complex genomes available in the NCBI and BV-BRC databases, the identification and characterization of CRISPR-Cas systems were performed using CRISPRCasFinder, CRISPRminer, and CRISPRDetect. Sequence types (STs) were determined using the Oxford scheme and ribosomal multilocus sequence typing (rMLST). Prophages were identified using PHASTER and Prophage Hunter. Results: A total of 293 genomes representing six Acb species exhibited CRISPR-related sequences. These genomes originate from various sources, including clinical specimens, animals, medical devices, and environmental samples. Sequence typing identified 145 ribosomal multilocus sequence types (rSTs). CRISPR-Cas systems were confirmed in 26.3% of the genomes, classified as subtypes I-Fa, I-Fb and I-Fv. Probable CRISPR arrays and cas genes associated with CRISPR-Cas subtypes III-A, I-B, and III-B were also detected. Some of the CRISPR-Cas systems are associated with genomic regions related to Cap4 proteins, and toxin-antitoxin systems. Moreover, prophage sequences were prevalent in 68.9% of the genomes. Analysis revealed a connection between these prophages and CRISPR-Cas systems, indicating an ongoing arms race between the bacteria and their bacteriophages. Furthermore, proteins associated with anti-CRISPR systems, such as AcrF11 and AcrF7, were identified in the A. baumannii and A. pittii genomes. Discussion: This study elucidates CRISPR-Cas systems and defense mechanisms within the Acb complex, highlighting their diverse distribution and interactions with prophages and other genetic elements. This study also provides valuable insights into the evolution and adaptation of these microorganisms in various environments and clinical settings.

11.
Crit Rev Microbiol ; : 1-10, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38651513

RÉSUMÉ

This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.

12.
Anaerobe ; 87: 102851, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38583547

RÉSUMÉ

Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.


Sujet(s)
Bactéries , Bactériophages , Bactériophages/génétique , Bactériophages/physiologie , Bactéries/virologie , Bactéries/génétique , ARN bactérien/génétique , ARN bactérien/métabolisme , Régulation de l'expression des gènes bactériens , Systèmes CRISPR-Cas , Clostridioides difficile/génétique , Clostridioides difficile/virologie , Humains
13.
bioRxiv ; 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38410456

RÉSUMÉ

Horizontal gene transfer (HGT) is a fundamental process in the evolution of prokaryotes, making major contributions to diversification and adaptation. Typically, HGT is facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages that generally impose fitness costs on their hosts. However, a substantial fraction of bacterial genes is involved in defense mechanisms that limit the propagation of MGEs, raising the possibility that they can actively restrict HGT. Here we examine whether defense systems curb HGT by exploring the connections between HGT rate and the presence of 73 defense systems in 12 bacterial species. We found that only 6 defense systems, 3 of which are different CRISPR-Cas subtypes, are associated with the reduced gene gain rate on the scale of species evolution. The hosts of such defense systems tend to have a smaller pangenome size and harbor fewer phage-related genes compared to genomes lacking these systems, suggesting that these defense mechanisms inhibit HGT by limiting the integration of prophages. We hypothesize that restriction of HGT by defense systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and fitness effect of HGT in bacterial populations.

14.
Microorganisms ; 12(2)2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-38399658

RÉSUMÉ

Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.

15.
Braz J Microbiol ; 55(1): 537-542, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38216797

RÉSUMÉ

Bacteriophages have been extensively investigated due to their prominent role in the virulence and resistance of pathogenic bacteria. However, little attention has been given to the non-pathogenic Bacillus phages, and their role in the ecological bacteria genome is overlooked. In the present study, we characterized two Bacillus phages with a linear DNA genome of 33.6 kb with 44.83% GC contents and 129.3 kb with 34.70% GC contents. A total of 46 and 175 putative coding DNA sequences (CDS) were identified in prophage 1 (P1) and prophage 2 (P2), respectively, with no tRNA genes. Comparative genome sequence analysis revealed that P1 shares eight CDS with phage Jimmer 2 (NC-041976), and phage Osiris (NC-028969), and six with phage phi CT9441A (NC-029022). On the other hand, P2 showed high similarity with Bacill_SPbeta_NC_001884 and Bacillus phage phi 105. Further, genome analysis indicates several horizontal gene transfer events in both phages during the evolution process. In addition, we detected two CRISPR-Cas systems for the first time in B. subtilis. The identified CRISPR system consists of 24 and 25 direct repeats and integrase coding genes, while the cas gene which encodes Cas protein involved in the cleavage of a target sequence is missing. These findings will expand the current knowledge of soil phages as well as help to develop a new perspective for investigating more ecological phages to understand their role in bacterial communities and diversity.


Sujet(s)
Bacillus , Bactériophages , Prophages/génétique , Bacillus subtilis/génétique , Systèmes CRISPR-Cas , Bactériophages/génétique
16.
Microbiol Spectr ; 12(1): e0279523, 2024 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-38088548

RÉSUMÉ

IMPORTANCE: Prophages play an important role in shaping the genetic diversity and evolution of their hosts. Acquisition or loss of prophages can lead to genomic variations, including changes in the bacterial phenotype promoted by recombination events, genetic repertoire exchanges and dissemination of virulence factors, and antibiotic resistance. By studying prophages in Campylobacter species, scientists can gain insights into the evolutionary patterns, pathogenicity mechanisms, epidemiology, and population dynamics of these species. This has implications for public health, antibiotic resistance surveillance, and the development of targeted therapeutic approaches.


Sujet(s)
Bactériophages , Campylobacter , Prophages/génétique , Campylobacter/génétique , Virulence , Facteurs de virulence , Recombinaison génétique , Bactériophages/génétique
17.
Microbiome Res Rep ; 2(4): 34, 2023.
Article de Anglais | MEDLINE | ID: mdl-38045928

RÉSUMÉ

Aim: Temperate phages are known to heavily impact the growth of their host, be it in a positive way, e.g., when beneficial genes are provided by the phage, or negatively when lysis occurs after prophage induction. This study provides an in-depth look into the distribution and variety of prophages in Latilactobacillus curvatus (L. curvatus). This species is found in a wide variety of ecological niches and is routinely used as a meat starter culture. Methods: Fourty five L. curvatus genomes were screened for prophages. The intact predicted prophages and their chromosomal integration loci were described. Six L. curvatus lysogens were analysed for phage-mediated lysis post induction via UV light and/or mitomycin C. Their lysates were analysed for phage particles via viral DNA sequencing and transmission electron microscopy. Results: Two hundred and six prophage sequences of any completeness were detected within L. curvatus genomes. The 50 as intact predicted prophages show high levels of genetic diversity on an intraspecies level with conserved regions mostly in the replication and head/tail gene clusters. Twelve chromosomal loci, mostly tRNA genes, were identified, where intact L. curvatus phages were integrated. The six analysed L. curvatus lysogens showed strain-dependent lysis in various degrees after induction, yet only four of their lysates appeared to contain fully assembled virions with the siphovirus morphotype. Conclusion: Our data demonstrate that L. curvatus is a (pro)phage-susceptible species, harbouring multiple intact prophages and remnant sequences thereof. This knowledge provides a basis to study phage-host interaction influencing microbial communities in food fermentations.

18.
BMC Genomics ; 24(1): 656, 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37907856

RÉSUMÉ

BACKGROUND: To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species. RESULTS: Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map. Pan-genome analysis revealed that Map has a larger accessory genome than Mycobacterium avium subsp. avium (Maa) and Type C Map has a larger accessory genome than Type S Map. In addition, we found large rearrangements within Type S strains of Map and little to none in Type C and Type B strains. There were 50 core genes identified that were unique to Type S Map and there were no unique core genes identified between Type B and Type C Map strains. In Type C Map we identified an additional CE10 CAZyme class which was identified as an alpha/beta hydrolase and an additional polyketide and non-ribosomal peptide synthetase cluster. Consistent with previous analysis no plasmids and only incomplete prophages were identified in the genomes of Map. There were 45 hypothetical CRISPR elements identified with no associated cas genes. CONCLUSION: This is the most comprehensive comparison of the genomic content of Map isolates to date and included the closing of eight Map genomes. The analysis revealed that there is greater variation in gene synteny within Type S strains when compared to Type C indicating that the Type C Map strain emerged after Type S. Further analysis of Type C and Type B genomes revealed that they are structurally similar with little to no genetic variation and that Type B Map may be a distinct clade within Type C Map and not a different strain type of Map. The evolutionary lineage of Maa and Map was confirmed as emerging after M. hominissuis.


Sujet(s)
Mycobacterium avium ssp. paratuberculosis , Paratuberculose , Animaux , Mycobacterium avium ssp. paratuberculosis/génétique , Phylogenèse , Génome , Synténie , Réarrangement des gènes , Paratuberculose/génétique , Mycobacterium avium/génétique
19.
Life (Basel) ; 13(11)2023 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-38004307

RÉSUMÉ

Listerias of the phylogenetic lineage II (PLII) are common in the European environment and are hypovirulent. Despite this, they caused more than a third of the sporadic cases of listeriosis and multi-country foodborne outbreaks. L. monocytogenes ST37 is one of them. During the COVID-19 pandemic, ST37 appeared in clinical cases and ranked second in occurrence among food isolates in the Moscow region. The aim of this study was to describe the genomic features of ST37 isolates from different sources. All clinical cases of ST37 were in the cohort of male patients (age, 48-81 years) with meningitis-septicemia manifestation and COVID-19 or Influenza in the anamnesis. The core genomes of the fish isolates were closely related. The clinical and meat isolates revealed a large diversity. Prophages (2-4/genome) were the source of the unique genes. Two clinical isolates displayed pseudolysogeny, and excided prophages were A006-like. In the absence of plasmids, the assortment of virulence factors and resistance determinants in the chromosome corresponded to the hypovirulent characteristics. However, all clinical isolates caused severe disease, with deaths in four cases. Thus, these studies allow us to speculate that a previous viral infection increases human susceptibility to listeriosis.

20.
mSystems ; 8(5): e0044623, 2023 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-37791767

RÉSUMÉ

IMPORTANCE: Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.


Sujet(s)
Bactériophages , Mycobactériophages , Mycobacterium , Humains , Prophages/génétique , Mycobacterium/génétique , Bactériophages/génétique , Mycobactériophages/génétique , Génome bactérien/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE