Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.399
Filtrer
1.
Microbiol Spectr ; : e0132424, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225473

RÉSUMÉ

To gain insights into the diversity of Pseudomonas syringae sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the P. syringae species complex and taxonomically classified into five genomospecies: P. syringae pv. syringae, P. syringae, Pseudomonas cerasi, Pseudomonas viridiflava, and A. We annotated components of the type III secretion system and phytotoxin-encoding genes and correlated the data with pathogenicity phenotypes. Intact probable regulatory protein HrpR was annotated in the genomic sequences of all isolates of P. syringae pv. syringae, P. syringae, P. cerasi, and A. Isolates of P. viridiflava had atypical probable regulatory protein HrpR. Syringomycin and syringopeptin-encoding genes were annotated in isolates of all genomospecies except for A and P. viridiflava. All isolates of P. syringae pv. syringae caused cankers, leaf spots, and fruit lesions in the field. In contrast, all isolates of P. syringae and P. cerasi and some isolates of P. viridiflava caused only cankers. Isolates of genomospecies A could not cause any symptoms suggesting phytotoxins are essential for pathogenicity. On detached immature cherry fruit pathogenicity assays, isolates of all five genomospecies produced symptoms (black-dark brown lesions). However, symptoms of isolates of genomospecies A were significantly (P < 0.01) less severe than those of other genomospecies. We also mined for genes conferring resistance to copper and kasugamycin and correlated these data with in vitro antibiotic sensitivity tests. IMPORTANCE: Comprehensive identification of phytopathogens and an in-depth understanding of their genomic architecture, particularly virulence determinants and antibiotic-resistant genes, are critical for several practical reasons. These include disease diagnosis, improved knowledge of disease epidemiology, pathogen diversity, and determination of the best possible management strategies. In this study, we provide the first report of the presence and pathogenicity of genomospecies Pseudomonas cerasi and Pseudomonas viridiflava in California sweet cherry. More importantly, we report a relatively high level of resistance to copper among the population of Pseudomonas syringae pv. syringae (47.5%). This implies copper cannot be effectively used to control bacterial blast and bacterial canker of sweet cherries. On the other hand, no isolates were resistant to kasugamycin, an indication that kasugamycin could be effectively used for the control of bacterial blast and bacterial canker. Our findings are important to improve the management of bacterial blast and bacterial canker of sweet cherries in California.

2.
Front Plant Sci ; 15: 1428613, 2024.
Article de Anglais | MEDLINE | ID: mdl-39220017

RÉSUMÉ

Introduction: Brown rot is the most important fungal disease affecting stone fruit and it is mainly caused by Monilinia fructicola, M. laxa and M. fructigena. Monilinia spp. are necrotrophic plant pathogens with the ability to induce plant cell death by the secretion of different phytotoxic molecules, including proteins or metabolites that are collectively referred to as necrotrophic effectors (NEs). Methods: We exploited the genomes of M. fructicola, M. laxa and M. fructigena to identify their common group of secreted effector proteins and tested the ability of a selected set of effectors to induce cell death in Nicotiana benthamiana, Solanum lycopersicum and Prunus spp. leaves. Results: Fourteen candidate effector genes of M. fructicola, which displayed high expression during infection, were transiently expressed in plants by agroinfiltration using a modified Tobacco Rattle Virus (TRV)-based expression system. Some, but not all, effectors triggered leaf discoloration or cell death in N. benthamiana and S. lycopersicum, which are non-hosts for Monilinia and in Prunus spp., which are the natural hosts. The effector MFRU_030g00190 induced cell death in almost all Prunus genotypes tested, but not in the Solanaceous plants, while MFRU_014g02060, which is an ortholog to BcNep1, caused necrosis in all plant species tested. Conclusion: This method provides opportunities for screening Prunus germplasm with Monilinia effector proteins, to serve as a tool for identifying genetic loci that confer susceptibility to brown rot disease.

3.
Plant Biol (Stuttg) ; 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39167083

RÉSUMÉ

Mechanisms involved in the supercooling of plant tissues as a means of low temperature survival are still not fully understood. We investigated properties that may promote supercooling in overwintering sweet cherry (Prunus avium) flower buds. We conducted experiments on sweet cherry flower buds using differential thermal analysis (DTA) and observed locations of ice formation in the bud structure. We also used anatomical development and water-soluble dye uptake throughout the overwintering period to identify changes that correlate with gain and loss of supercooling capacity. Our results revealed barriers to ice propagation are likely unique to each primordium, as inferred from exotherms produced from buds subjected to DTA, although multiple primordia may freeze simultaneously. Ice is accommodated between the bud scales and within the bud axis; however, full expression of supercooling was not dependent on the presence of scales. Anatomical and DTA studies revealed a correlation between vascular differentiation in primordia and loss of supercooling in the spring; these observations were at a higher temporal resolution than previously described for Prunus. Furthermore, disturbing tissues subtending the primordia interfered with typical patterns of supercooling, indicated more erratic and numerous exotherms produced during DTA. In summary, sweet cherry flower buds undergo extra-organ freezing. In winter, a barrier to ice propagation in the region directly subtending primordia protects the flower from freezing damage, but in the spring xylem differentiation in primordia provides a conduit for ice propagation that compromises supercooling.

4.
Food Sci Biotechnol ; 33(10): 2357-2366, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39145126

RÉSUMÉ

Stone-fruit liqueurs contain high contents of the carcinogen ethyl carbamate (EC). In this study, we investigated the effect of plum fruit extract and single antioxidants present in plum fruit extracts on the reduction in the EC content during the macerating process in a plum liqueur model system and authentic plum liqueur. 30% ethanol model plum liqueur treated with 0.2% plum extract showed the lowest EC content with 55% reduction rate after the macerating process compared to the content in the control. Interestingly, neither 0.1% ascorbic acid nor 0.1% p-coumaric acid lowered the EC contents in the model liqueur, while they decreased the EC contents in authentic plum liqueur. This was possibly attributed to the synergistic effect of the plum fruit phenolics with the ascorbic acid and p-coumaric acid antioxidants. Thus, plum extracts can be applied to plum liqueurs to reduce the rate of EC formation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01585-1.

5.
Front Fungal Biol ; 5: 1443343, 2024.
Article de Anglais | MEDLINE | ID: mdl-39149520

RÉSUMÉ

Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge. Development of field ready products requires collecting, screening, and characterizing a greater variety of potential entomopathogenic fungal species and strains. Creation of a standardized research framework to study entomopathogenic fungi will aid in identifying the potential mechanisms of biological control activity that fungi could possess, including antibiotic metabolite production; strains and species best suited to survive in different climates and agroecosystems; and optimized combinations of entomopathogenic fungi and novel formulations. This mini review therefore discusses strategies to collect and characterize new entomopathogenic strains, test different potential mechanisms of biocontrol activity, examine ability of different species and strains to tolerate different climates, and lastly how to utilize this information to develop strains into products for growers.

6.
Talanta ; 280: 126702, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39180873

RÉSUMÉ

A high performance liquid chromatography-ultraviolet-visible detector-electrospray ionization-ion trap-time-of-flight-mass spectrometry-total antioxidant capacity determination (HPLC-UVD-ESI-IT-TOF-MS-TACD) new online technique was developed for efficient screening of potential antioxidant active components in Prunus persica flowers (PPF) from 4 origins. Through this online system, 46 compounds were initially identified, while 20 compounds with DPPH binding activity and 21 compounds with FRAP binding activity were detected. The antioxidant activities of 9 compounds obtained from the screening were then validated in DNA oxidative damage protection study. The results showed that this online system can cope well with the complexity of the samples. This also provides technical basis for rapid screening of antioxidant resources of PPF. In short, this study made the chemical composition of PPF more abundant and its potential antioxidant active compounds more explicit, which provided new ideas for the detection and development of natural antioxidants and provided scientific basis for PPF as functional food.

7.
J Integr Plant Biol ; 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39185667

RÉSUMÉ

WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.

8.
Molecules ; 29(16)2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39202966

RÉSUMÉ

The Japanese plum tree (Prunus salicina Lindl.) is mainly cultivated in temperate areas of China and some European countries. Certain amounts of wood (from pruning works) are generated every year from this crop of worldwide commercial significance. The main objective of this work was to value this agricultural woody residue, for which the chemical composition of pruning wood extracts from six Japanese plum cultivars was investigated, and the antiproliferative activity of extracts and pure phenolics present in those extracts was measured. For the chemical characterization, total phenolic content and DPPH radical-scavenging assays and HPLC‒DAD/ESI‒MS analyses were performed, with the procyanidin (-)-ent-epicatechin-(2α→O→7,4α→8)-epicatechin (5) and the propelargonidin (+)-epiafzelechin-(2ß→O→7,4ß→8)-epicatechin (7) being the major components of the wood extracts. Some quantitative differences were found among plum cultivars, and the content of proanthocyanidins ranged from 1.50 (cv. 'Fortune') to 4.44 (cv. 'Showtime') mg/g of dry wood. Regarding the antitumoral activity, eight wood extracts and four phenolic compounds were evaluated in MCF-7 cells after 48 h of induction, showing the wood extract from cv. 'Songold' and (‒)-annphenone (3), the best antiproliferative activity (IC50: 424 µg/mL and 405 µg/mL, respectively).


Sujet(s)
Extraits de plantes , Bois , Humains , Bois/composition chimique , Extraits de plantes/pharmacologie , Extraits de plantes/composition chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques d'origine végétale/pharmacologie , Antinéoplasiques d'origine végétale/composition chimique , Prunus domestica/composition chimique , Phénols/composition chimique , Phénols/pharmacologie , Phénols/analyse , Chromatographie en phase liquide à haute performance , Cellules MCF-7 , Prunus/composition chimique , Lignée cellulaire tumorale , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antioxydants/pharmacologie , Antioxydants/composition chimique
9.
Plants (Basel) ; 13(16)2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39204723

RÉSUMÉ

Calcium foliar applications are known to effectively enhance peach quality; however, the optimal implementation strategy regarding fruit developmental stages and cultivars remains unclear. In this study, three different moments of fruit Ca applications in peach and nectarine are tested: Early season, Mid-season, and Late season. For this aim, the 44Ca isotope was used as a tracer, enabling the quantification and location of the Ca derived from the foliar fertilizer. Stone, flesh, and skin 44Ca enrichment was separately analyzed at harvest. The results indicate that Ca absorption in the fruits from external CaCl2 applications was influenced by the timing of the application during fruit development, with Late-season applications proving to be the most effective in increasing the Ca content in the fruit, corresponding with a higher fruit size at the application moment. Nevertheless, no differences in the absorption efficiency were found between the three timings of the application. Furthermore, the Ca from the foliar fertilizer in the fruit predominately remained in the flesh, followed by the skin. The Ca derived from the foliar fertilizer reached the stone in all of the experimental situations, but the Early- and Mid-season applications resulted in the highest amount of Ca derived from the fertilizer in this part of the fruit. Interestingly, the peach exhibited a higher Ca absorption efficiency compared to the nectarine, likely due to the presence of trichomes that retain the foliar fertilizer on the fruit surface. In conclusion, the Ca absorption and distribution in peaches depends on the cultivar and timing of the Ca application.

10.
Foods ; 13(16)2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39200536

RÉSUMÉ

Prunus mume (maesil) is an economically important fruit in Korea. Recently, public interest in maesil sugar syrup is increasing. However, the presence of toxic amygdalin in the fruit syrup is a concern. Thus, the current investigation aimed to observe effects of maesil maturity, ripening methods, processing, and fermentation period on the amygdalin level in maesil sugar syrup. Six different types of maesil sugar syrup were prepared and amygdalin content was monitored at 3-month intervals. Higher levels (>63 mg/L) of amygdalin were found in syrups prepared from unripe fruit compared to those in syrups made from ripe fruit after 3 months of fermentation. A rapid reduction in amygdalin content was observed until 9 months in all syrups, gradually reducing to <5 mg/L at 12 months. More than 9 months of maturation is crucial for reducing the amygdalin content maesil sugar syrup, regardless of fruit maturity, source of fruit, and processing method.

11.
BMC Biol ; 22(1): 184, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39183294

RÉSUMÉ

BACKGROUND: Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS: There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS: Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.


Sujet(s)
Brassinostéroïdes , Acides indolacétiques , Protéines végétales , Prunus , Transduction du signal , Brassinostéroïdes/métabolisme , Acides indolacétiques/métabolisme , Prunus/génétique , Prunus/métabolisme , Prunus/physiologie , Prunus/croissance et développement , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteur de croissance végétal/métabolisme , Régulation de l'expression des gènes végétaux , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Stéroïdes hétérocycliques/métabolisme
12.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39201381

RÉSUMÉ

Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.


Sujet(s)
Régulation de l'expression des gènes végétaux , Gibbérellines , Phylogenèse , Protéines végétales , Prunus , Prunus/génétique , Prunus/croissance et développement , Prunus/enzymologie , Prunus/métabolisme , Gibbérellines/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Régions promotrices (génétique) , Arabidopsis/génétique , Arabidopsis/croissance et développement , Famille multigénique , Mixed function oxygenases/génétique , Mixed function oxygenases/métabolisme , Génome végétal
13.
Foods ; 13(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39123621

RÉSUMÉ

BACKGROUND: Lipid metabolism disorder appears to be one of the early features of alcoholic liver disease (ALD), which can be speculated via omics analysis including liver transcriptomics and gut microbiota. A complex consisting of the roots of Pueraria lobata and dried fruits of Prunus mume (PPC), which possesses hepatoprotective effects, could serve as a drug or functional food. The lack of non-polysaccharide compounds in PPC with their moderation effects on gut microbiota suggests the necessity for a relevant study. METHODS: Six groups of Kunming mice (control, Baijiu injury, silybin, low, medium, and high) were modelled by gavage with Baijiu (for 14 days) and PPC (equivalent to a maximum dose of 9 g/kg in humans). The liver transcriptome data were analyzed to predict gene annotation, followed by the verification of gut microbiota, serum, tissue staining, immunohistochemistry, and Western blotting. Liquid chromatography-mass spectrometry was used to detect the components. RESULTS: PPC normalized serum ALT (40 U/L), down-regulated TLR4-NF-κB signaling pathway to inhibit the release of TNF-α (90 pg/mL), improved the expression of occludin, claudin-4, and ZO-1, and restored the abundance of Muribaculaceae, Bacteroides and Streptococcus. CONCLUSION: PPC can alleviate ALD by regulating the gut microbiota with an anti-inflammatory and intestinal barrier, and has an application value in developing functional foods.

14.
Plant Dis ; 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39207338

RÉSUMÉ

Banbianhong (Prunus salicina) is a valuable fruit crop cultivated in the southwestern regions of China for its high quality fruit and substantial economic benefits (Wang et al. 2021). In July 2023, dieback disease was observed in Banbianhong in Suijiang County, Zhaotong, Yunnan Province, with an incidence of up to 10%. The disease caused brownish nodules in the cortex of the infected plant, leading to dry cracking, and exposing grayish-brown xylem, which caused the plant to wither and die. Upon longitudinal cutting of twigs, lesions were evident and characterized by browning and necrosis of the cauline bundle and pith within the tissue. The diseased tissues were sectioned into 2 mm2 pieces and surface disinfected with 70% ethanol and 1% NaClO and rinsed with double distilled water. The tissue fragments were plated onto potato dextrose agar (PDA), and incubated for 7 days at 28°C. A total of six isolates were obtained, and two isolates (WG2-1 and WG2-3) were selected for morphological, molecular identification and pathogenicity testing. On PDA, the colony diameter of WG2-1 and WG2-3 were recorded as 5.50±0.56 mm/day and 6.08±0.37 mm/day, respectively. The microconidia of both isolates were zero-septate, smooth, greenish, subglobose to ellipsoidal, and measured 5 to 10 × 1.5 to 3 µm (n = 50) in size. However, macroconidia were not observed. The internal transcribed spacer rDNA (ITS) and ß-tubulin 2 (TUB2) genes were amplified using the primer pairs ITS1/4 (White et al. 1989) and Bt2a/2b (Glass and Donaldson 1995). BLAST analysis of the obtained ITS sequences (accession Nos. PP581792) and TUB2 sequences (accession Nos. PP2815212) sequences showed 100% identity with Rugonectria rugulosa (accession nos. MG991753 for ITS and KM232007 for TUB2). Based on these characteristics, the isolates have been identified as R. rugulosa and have been deposited in the Agricultural Environment and Resource Research Institute plant pathogen lab at Yunnan Academy of Agricultural Sciences. In this study, Pathogenicity tests were conducted on one-year-old Prunus salicina "Banbianhong" twigs to complete Koch's postulates. The twigs were wounded using a 1-mm sterile corking borer and 14-day-old mycelium plugs of isolate (WG2-1) were inoculated and covered with sealing films. Sterile PDA plugs were placed into the wounds of control twigs. Eighteen healthy twigs were inoculated with isolates or PDA plugs (n = 6 twigs/treatment, the size of the twigs: 8 cm length and diameter about 0.7 cm, with three replications) and were placed in a closed sterile tray with the wet filter papers in a thermostatic incubator (type, HYC-260) at 28°C, respectively. The twigs inoculated with the isolates exhibited brown lesions site of inoculation, whereas the controls remained asymptomatic. R. rugulosa was successfully reisolated from the lesions but not from these control wounds and was identified by the methods described above. R. rugulosa has been reported to be associated with the die-back disease of Falcataria moluccana in China (Wang et al. 2019). The occurrence and spread of R. rugulosa in growing areas of Prunus salicina "Banbianhong" in Suijiang county have caused severe economic losses. To our knowledge, this is the first report of the die-back disease of Prunus salicina "Banbianhong" caused by R. rugulosa. These results confirm the pathogenicity of R. rugulosa in Prunus salicina "Banbianhong" and provide valuable insights for developing disease management and prevention strategies.

15.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39065776

RÉSUMÉ

The incidence of cardiovascular diseases, such as high blood pressure, is increasing worldwide, owing to population aging and irregular lifestyle habits. Previous studies have reported the vasorelaxant effects of Prunus yedoensis bark methanol extract. However, various solvent extracts of P. yedoensis bark and their vascular relaxation mechanisms have not been sufficiently studied. We prepared extracts of P. yedoensis bark using various solvents (water, 30% ethanol, and 70% ethanol). P. yedoensis bark 30% ethanol extract (PYB-30E) decreased the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in human umbilical vein endothelial cells (HUVECs) activated with 200 ng/mL TNF-α. Additionally, PYB-30E showed vasodilatory effects on isolated rat aortic rings. This was confirmed to be the result of the activation of the NO/cGMP pathway, regulation of non-selective calcium-activated K+ channels, and calcium channel blockade. Additionally, PYB-30E significantly reduced systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR). Taken together, our results indicated that PYB-30E is a candidate functional material with preventive and therapeutic effects against hypertension.

16.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38976088

RÉSUMÉ

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Sujet(s)
Régulation de l'expression des gènes végétaux , Peptides , Maladies des plantes , Prunus dulcis , Xylella , Xylella/pathogénicité , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Prunus dulcis/microbiologie , Peptides/pharmacologie , Peptides/métabolisme , Acide salicylique/métabolisme , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Résistance à la maladie , Feuilles de plante/microbiologie , Feuilles de plante/immunologie , Feuilles de plante/métabolisme , Feuilles de plante/génétique
17.
Genes Genomics ; 46(9): 1023-1036, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38997611

RÉSUMÉ

BACKGROUND: Cold shock proteins (CSPs) are ubiquitous nucleic acid-binding proteins involved in growth, development, and stress response across various organisms. While extensively studied in many species, their regulatory roles in sweet cherry (Prunus avium L.) remain unclear. OBJECTIVE: To identify and analyze CSP genes (PavCSPs) in sweet cherry genome, and explore the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress. METHODS: Three methods were employed to identify and characterize CSP in sweet cherry genomes. To explore the potential functions and evolutionary relationships of sweet cherry CSP proteins, sequence alignment and phylogenetic tree incorporating genes from five species were conducted and constructed, respectively. To investigate the responses to abiotic stresses, cis-acting elements analysis and gene expression patterns to low-temperature and salt stress were examined. Moreover, transgenic yeasts overexpressing PavCSP1 or PavCSP3 were generated and their growth under stress conditions were observed. RESULTS: In this study, three CSP genes (PavCSPs) were identified and comprehensively analyzed. The quantitative real-time PCR revealed diverse expression patterns, with PavCSP1-3 demonstrating a particular activity in the upper stem and all members were responsive to low-temperature and salt stress. Further investigation demonstrated that transgenic yeasts overexpressing PavCSP1 or PavCSP3 exhibited improved growth states following high-salt and low-temperature stress. CONCLUSION: These findings elucidated the responses of PavCSP1 and PavCSP3 to salt and low-temperature stresses, laying the groundwork for further functional studies of PavCSPs in response to abiotic stresses.


Sujet(s)
Protéines et peptides de choc froid , Basse température , Phylogenèse , Protéines végétales , Prunus avium , Stress salin , Protéines et peptides de choc froid/génétique , Protéines et peptides de choc froid/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Stress salin/génétique , Prunus avium/génétique , Prunus avium/métabolisme , Prunus avium/croissance et développement , Régulation de l'expression des gènes végétaux , Réponse au choc froid/génétique , Génome végétal/génétique
18.
Molecules ; 29(13)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38998984

RÉSUMÉ

Almond trees are the most cultivated nut tree in the world. The production of almonds generates large amounts of by-products, much of which goes unused. Herein, this study aimed to develop a green chemistry approach to identify and extract potentially valuable compounds from almond by-products. Initially, a screening was performed with 10 different Natural Deep Eutectic Solvents (NADESs). The mixture lactic acid/glycerol, with a molar ratio 1:1 (1:50 plant material to NADES (w/v) with 20% v/v of water) was identified as the best extraction solvent for catechin, caffeoylquinic acid, and condensed tannins in almond hulls. Subsequently, a method was optimized by a Design of Experiment (DoE) protocol using a miniaturized extraction technique, Microwave-Assisted Extraction (MAE), in conjunction with the chosen NADESs. The optimal conditions were found to be 70 °C with 15 min irradiation time. The optimal extraction conditions determined by the DoE were confirmed experimentally and compared to methods already established in the literature. With these conditions, the extraction of metabolites was 2.4 times higher, according to the increase in total peak area, than the established literature methods used. Additionally, by applying the multiparameter Analytical Greenness Metric (AGREE) and Green Analytical Process Index (GAPI) metrics, it was possible to conclude that the developed method was greener than the established literature methods as it includes various principles of green analytical chemistry.


Sujet(s)
Extraits de plantes , Prunus dulcis , Prunus dulcis/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/isolement et purification , Micro-ondes , Technologie de la chimie verte/méthodes , Solvants/composition chimique , Biomimétique , Noix/composition chimique
19.
Plants (Basel) ; 13(13)2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38999578

RÉSUMÉ

Disease severity and drought due to climate change present significant challenges to orchard productivity. This study examines the effects of spring inoculation with Pseudomonas syringae pv. syringae (Pss) on sweet cherry plants, cvs. Bing and Santina with varying defense responses, assessing plant growth, physiological variables (water potential, gas exchange, and plant hydraulic conductance), and the levels of abscisic acid (ABA) and salicylic acid (SA) under two summer irrigation levels. Pss inoculation elicited a more pronounced response in 'Santina' compared to 'Bing' at 14 days post-inoculation (dpi), and those plants inoculated with Pss exhibited a slower leaf growth and reduced transpiration compared to control plants during 60 dpi. During differential irrigations, leaf area was reduced 14% and 44% in Pss inoculated plants of 'Bing' and 'Santina' respectively, under well-watered (WW) conditions, without changes in plant water status or gas exchange. Conversely, water-deficit (WD) conditions led to gas exchange limitations and a 43% decrease in plant biomass compared to that under WW conditions, with no differences between inoculation treatments. ABA levels were lower under WW than under WD at 90 dpi, while SA levels were significantly higher in Pss-inoculated plants under WW conditions. These findings underscore the influence on plant growth during summer in sweet cherry cultivars that showed a differential response to Pss inoculations and how the relationship between ABA and SA changes in plant drought level responses.

20.
Plants (Basel) ; 13(12)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38931035

RÉSUMÉ

To prevent frost damage in fruit trees, growers employ passive and active methods, and one of these second methods is the use of biostimulant compounds against abiotic stress. In this study, two trials were conducted to evaluate the effectiveness of a multi-attribute approach biostimulant-containing α-tocopherol, boron, and glycols, in peach ('UFO-4' cultivar) and almond ('Vairo' cultivar) trees. In a first trial, one-year-old shoots with flowers were collected after 24 h, 48 h, and 96 h of the biostimulant applications. Two different application rates of the product (1000 and 2000 cc ha-1) were tested and compared to an untreated control. In a second trial, one-year-old shoots with fruitlets were collected after 24 h of the biostimulant applications. In this case, only an application rate (2000 cc ha-1) was tested. In the two trials, the collected one-year-old shoots were subjected to different frost temperatures using a controlled environment chamber. The damage level was assessed by a morphological analysis of the flowers and fruitlets 96 h after each frost cycle simulation. The lethal temperatures (LT10, LT50, and LT90) of each treatment were calculated by probit analysis. The product applied 24 h and 48 h before the frost simulations significantly decreased the LT10 and LT50 in 1.5 °C in peach flowers, and 2.5 °C in almond flowers (a temperature reduction of 50% and 75%, respectively). These results were more consistent when the application volume was 2000 cc ha-1, instead of 1000 cc ha-1. Significant differences between treated and non-treated fruitlets were observed only in almond fruitlets, with LT10 and LT50 being 0.5 °C lower in treated fruitlets (20% reduction). In conclusion, the multi-attribute approach biostimulant applied 24 or 48 h before the frost reduced the mortality of peach and almond flowers, but its effectiveness to protect fruitlets after bloom was inconsistent.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE