Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 13.480
Filtrer
1.
J Environ Sci (China) ; 149: 164-176, 2025 Mar.
Article de Anglais | MEDLINE | ID: mdl-39181631

RÉSUMÉ

Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.


Sujet(s)
Cérium , Cobalt , Oxydoréduction , Titane , Toluène , Titane/composition chimique , Cobalt/composition chimique , Catalyse , Toluène/composition chimique , Cérium/composition chimique , Modèles chimiques , Processus photochimiques
2.
Biomaterials ; 312: 122707, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39121729

RÉSUMÉ

Polypyrimidine tract-binding protein 1 (PTBP1) regulates numerous alternative splicing events during tumor progression and neurogenesis. Previously, PTBP1 downregulation was reported to convert astrocytes into functional neurons; however, how PTBP1 regulates astrocytic physiology remains unclear. In this study, we revealed that PTBP1 modulated glutamate uptake via ATP1a2, a member of Na+/K+-ATPases, and glutamate transporters in astrocytes. Ptbp1 knockdown altered mitochondrial function and energy metabolism, which involved PTBP1 regulating mitochondrial redox homeostasis via the succinate dehydrogenase (SDH)/Nrf2 pathway. The malfunction of glutamate transporters following Ptbp1 knockdown resulted in enhanced excitatory synaptic transmission in the cortex. Notably, we developed a biomimetic cationic triblock polypeptide system, i.e., polyethylene glycol44-polylysine30-polyleucine10 (PEG44-PLL30-PLLeu10) with astrocytic membrane coating to deliver Ptbp1 siRNA in vitro and in vivo, which approach allowed Ptbp1 siRNA to efficiently cross the blood-brain barrier and target astrocytes in the brain. Collectively, our findings suggest a framework whereby PTBP1 serves as a modulator in glutamate transport machinery, and indicate that biomimetic methodology is a promising route for in vivo siRNA delivery.


Sujet(s)
Astrocytes , Acide glutamique , Ribonucléoprotéines nucléaires hétérogènes , Homéostasie , Facteur-2 apparenté à NF-E2 , Protéine PTB , Petit ARN interférent , Animaux , Astrocytes/métabolisme , Acide glutamique/métabolisme , Protéine PTB/métabolisme , Protéine PTB/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Ribonucléoprotéines nucléaires hétérogènes/métabolisme , Ribonucléoprotéines nucléaires hétérogènes/génétique , Souris , Transduction du signal , Membrane cellulaire/métabolisme , Souris de lignée C57BL , Mâle , Humains , Mitochondries/métabolisme
3.
Redox Biol ; 76: 103332, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39217848

RÉSUMÉ

Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.

4.
Angew Chem Int Ed Engl ; : e202411870, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39222319

RÉSUMÉ

A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol%. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electron properties of the metal throughout the catalytic cycle. DFT calculations show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, while binding as an η1 L-type ligand to promote N-S oxidative addition at a relatively more electron-rich and sterically less crowded Ni(I) center.

5.
Water Res ; 266: 122400, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39260195

RÉSUMÉ

The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.

6.
Metabolism ; : 156027, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39260557

RÉSUMÉ

OBJECTIVE: Redox signaling mediated by reversible oxidative cysteine thiol modifications is crucial for driving cellular adaptation to dynamic environmental changes, maintaining homeostasis, and ensuring proper function. This is particularly critical in pancreatic ß-cells, which are highly metabolically active and play a specialized role in whole organism glucose homeostasis. Glucose stimulation in ß-cells triggers signals leading to insulin secretion, including changes in ATP/ADP ratio and intracellular calcium levels. Additionally, lipid metabolism and reactive oxygen species (ROS) signaling are essential for ß-cell function and health. METHODS: We employed IodoTMT isobaric labeling combined with tandem mass spectrometry to elucidate redox signaling pathways in pancreatic ß-cells. RESULTS: Glucose stimulation significantly increases ROS levels in ß-cells, leading to targeted reversible oxidation of proteins involved in key metabolic pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, pyruvate metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum (ER), and insulin secretion. Furthermore, the glucose-induced increase in reversible cysteine oxidation correlates with the presence of other post-translational modifications, including acetylation and phosphorylation. CONCLUSIONS: Proper functioning of pancreatic ß-cell metabolism relies on fine-tuned regulation, achieved through a sophisticated system of diverse post-translational modifications that modulate protein functions. Our findings demonstrate that glucose induces the production of ROS in pancreatic ß-cells, leading to targeted reversible oxidative modifications of proteins. Furthermore, protein activity is modulated by acetylation and phosphorylation, highlighting the complexity of the regulatory mechanisms in ß-cell function.

7.
ChemSusChem ; : e202401315, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39261283

RÉSUMÉ

irect Air Capture (DAC) is an emerging form of atmospheric carbon dioxide removal. Conventional DAC sorbents utilize swings in temperature and/or pressure, which are energy intensive and hinders large-scale deployment. In this work, we demonstrate a green, aqueous electrochemical DAC system that employs Alizarin Red S (ARS) as an electroactive capturing agent. The system has an estimated minimum theoretical energy requirement of 24.6 kJe/mole of CO2, demonstrated reversible electrochemical behavior over 100 cycles and 205 hours, and maintained an average coulombic efficiency of 100% with an average capacity retention of 99.8%. With a techno-economic analysis, we highlight the impact of current density and electrode surface area on levelized costs, and we describe a path to lower the cost of DAC below US$500 per tonne of CO2.

8.
Microb Cell Fact ; 23(1): 246, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39261865

RÉSUMÉ

BACKGROUND: Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS: When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS: By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.


Sujet(s)
Gluconates , Génie métabolique , Pseudomonas putida , Biologie des systèmes , Pseudomonas putida/métabolisme , Pseudomonas putida/génétique , Gluconates/métabolisme , Génie métabolique/méthodes , Biologie des systèmes/méthodes , Glucose/métabolisme , Protéomique , Multi-omique
9.
Front Nutr ; 11: 1394632, 2024.
Article de Anglais | MEDLINE | ID: mdl-39262430

RÉSUMÉ

There has been a sea of change in our understanding of the contribution of food to both our well-being and disease states. When one addresses "food as medicine," the concept of oxidative stress needs to be included. This review interconnects the basic science findings of oxidative stress and redox balance with the medicinal use of food, emphasizing optimization of the redox balance. To better illustrate the impacts of oxidative stress, the concept of the "triple oxidant sink" is introduced as a theoretical gauge of redox balance. Utilizing the concept, the true importance of dietary and lifestyle factors can be emphasized, including the limitations of supplements or a handful of "superfoods," if the remainder of the factors are pro-oxidant. The effects of a whole plant food diet compared with those of dietary supplements, processed foods, animal based nutrients, or additional lifestyle factors can be visually demonstrated with this concept. This paper provides an overview of the process, acknowledging that food is not the only mechanism for balancing the redox status, but one that can be strategically used to dramatically improve the oxidative state, and thus should be used as medicine.

10.
Function (Oxf) ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39264045

RÉSUMÉ

Kv1.2 potassium channels influence excitability and action potential propagation in the nervous system. Unlike closely-related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.

11.
Angew Chem Int Ed Engl ; : e202411110, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39264261

RÉSUMÉ

Bidentate N-ligands are paramount to recent advances in nickel-catalyzed cross-coupling reactions. Through comprehensive organometallic, spectroscopic, and computational studies on bi-oxazoline and imidazoline ligands, we reveal that a square planar geometry enables redox activity of these ligands in stabilizing nickel radical species. This finding contrasts with the prior assumption that bi-oxazoline lacks redox activity due to strong mesomeric donation. Moreover, we conducted systematic cyclic voltammetry (CV) analyses of bidentate pyridyl, oxazoline, and imidazoline nitrogen ligands, along with their corresponding nickel complexes. Complexation with nickel shifts the reduction potentials to a more positive region and narrows the differences in redox potentials among the ligands. Additionally, various ligands led to different degrees of bromide dissociation from singly reduced (L)Ni(Ar)(Br) complexes, reflecting varying reactivity in the subsequent activation of alkyl halides, a crucial step in cross-electrophile coupling. These insights highlight the significant electronic effects of ligands on the stability of metalloradical species and their redox potentials, which interplay with coordination geometry. Quantifying the electron-donating, p-accepting properties of these ligands, as well as their effect on catalyst speciation, provides crucial benchmarks for controlling catalytic activity and enhancing catalyst stability.

12.
Prog Biophys Mol Biol ; 193: 19-34, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39245215

RÉSUMÉ

Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.

13.
Chemosphere ; 364: 143297, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39245218

RÉSUMÉ

Phthalates, widely used as plasticizers, have been increasingly linked to male reproductive toxicity through mechanisms including oxidative stress, endocrine disruption, inflammation, and apoptosis. This comprehensive review evaluates the protective role of various antioxidants in mitigating the detrimental effects of phthalates such as di-(2-ethylhexyl) phthalate (DEHP), di-butyl phthalate (DBP), mono-(2-ethylhexyl) phthalate (MEHP), and monobutyl phthalate (MBP) on male reproductive health. Antioxidants such as lycopene, ellagic acid, genistein, and selenium compounds exhibit significant efficacy in counteracting phthalate-induced damage by neutralizing reactive oxygen species (ROS), enhancing endogenous antioxidant defenses, reducing inflammatory responses, and preventing apoptosis. Lycopene demonstrates broad-spectrum protective effects, particularly through its high ROS-scavenging capacity and ability to preserve mitochondrial function. Ellagic acid effectively ameliorates oxidative stress and inflammation, while genistein enhances the Nrf2 pathway and restores hormonal balance, offering robust protection against reproductive toxicity. Selenium compounds improve antioxidant enzyme activities, providing essential support against oxidative damage. These findings underscore the potential of antioxidants as therapeutic agents against phthalate-induced male reproductive dysfunction. Future research should focus on optimizing antioxidant combinations, understanding dose-response relationships, and assessing long-term efficacy and safety to develop effective interventions for safeguarding male reproductive health.

14.
Asian J Pharm Sci ; 19(4): 100926, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39253610

RÉSUMÉ

Intracellular bacteria can multiply inside host cells and manipulate their biology, and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation. Fighting against these stealthy bacteria has been a long-standing challenge. Here, a system of stimuli-responsive lactoferrin (Lf) nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin (Rif) (Rif@Lf NPs) for enhanced infection therapy through targeted elimination of intracellular bacteria. Compared to Rif@BSA NPs, the Rif@Lf NPs can specifically target macrophages infected by bacteria, thus increasing the accumulation of Rif within macrophages. Subsequently, Rif@Lf NPs with positive surface charge further displayed targeted adherence to the bacteria within macrophages and released Rif rapidly in a redox-responsive manner. Combined with the antibacterial activities of Lf and Rif, the Rif@Lf NPs showed broad-spectrum antibiotic abilities to intracellular bacteria and biofilms. As a result, the Rif@Lf NPs with high safety exhibited excellent therapeutic efficacy in the disease models of subcutaneous infection, sepsis, and bacterial keratitis. Taken together, the antibiotic-loaded Lf nanoparticles present a promising platform to combat pathogen infections through targeted elimination of intracellular bacteria.

15.
Food Microbiol ; 124: 104624, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39244375

RÉSUMÉ

Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.


Sujet(s)
Fermentation , Oxydoréduction , Oxygène , Saccharomyces cerevisiae , Vin , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/croissance et développement , Oxygène/métabolisme , Vin/microbiologie , Vin/analyse , Anaérobiose , Vitis/microbiologie , Vitis/métabolisme , NAD/métabolisme , Éthanol/métabolisme , NADP/métabolisme , Aérobiose , Régulation de l'expression des gènes fongiques , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Coenzymes/métabolisme
16.
Hum Reprod ; 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39241251

RÉSUMÉ

STUDY QUESTION: What is the molecular landscape underlying the functional decline of human testicular ageing? SUMMARY ANSWER: The present study provides a comprehensive single-cell transcriptomic atlas of testes from young and old humans and offers insights into the molecular mechanisms and potential targets for human testicular ageing. WHAT IS KNOWN ALREADY: Testicular ageing is known to cause male age-related fertility decline and hypogonadism. Dysfunction of testicular cells has been considered as a key factor for testicular ageing. STUDY DESIGN, SIZE, DURATION: Human testicular biopsies were collected from three young individuals and three old individuals to perform single-cell RNA sequencing (scRNA-seq). The key results were validated in a larger cohort containing human testicular samples from 10 young donors and 10 old donors. PARTICIPANTS/MATERIALS, SETTING, METHODS: scRNA-seq was used to identify gene expression signatures for human testicular cells during ageing. Ageing-associated changes of gene expression in spermatogonial stem cells (SSCs) and Leydig cells (LCs) were analysed by gene set enrichment analysis and validated by immunofluorescent and functional assays. Cell-cell communication analysis was performed using CellChat. MAIN RESULTS AND THE ROLE OF CHANCE: The single-cell transcriptomic landscape of testes from young and old men was surveyed, revealing age-related changes in germline and somatic niche cells. In-depth evaluation of the gene expression dynamics in germ cells revealed that the disruption of the base-excision repair pathway is a prominent characteristic of old SSCs, suggesting that defective DNA repair in SSCs may serve as a potential driver for increased de novo germline mutations with age. Further analysis of ageing-associated transcriptional changes demonstrated that stress-related changes and cytokine pathways accumulate in old somatic cells. Age-related impairment of redox homeostasis in old LCs was identified and pharmacological treatment with antioxidants alleviated this cellular dysfunction of LCs and promoted testosterone production. Lastly, our results revealed that decreased pleiotrophin signalling was a contributing factor for impaired spermatogenesis in testicular ageing. LARGE SCALE DATA: The scRNA-seq sequencing and processed data reported in this paper were deposited at the Genome Sequence Archive (https://ngdc.cncb.ac.cn/), under the accession number HRA002349. LIMITATIONS, REASONS FOR CAUTION: Owing to the difficulty in collecting human testis tissue, the sample size was limited. Further in-depth functional and mechanistic studies are warranted in future. WIDER IMPLICATIONS OF THE FINDINGS: These findings provide a comprehensive understanding of the cell type-specific mechanisms underlying human testicular ageing at a single-cell resolution, and suggest potential therapeutic targets that may be leveraged to address age-related male fertility decline and hypogonadism. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2022YFA1104100), the National Natural Science Foundation of China (32130046, 82171564, 82101669, 82371611, 82371609, 82301796), the Natural Science Foundation of Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and Genetics (KF202001), the Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921, 2022A1515111201), and the China Postdoctoral Science Foundation (2021M703736). The authors declare no conflict of interest.

17.
J Comput Chem ; 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39240057

RÉSUMÉ

Sulfonyl fluorides hold significant importance as highly valued intermediates in chemical biology due to their optimal balance of biocompatibility with both aqueous stability and protein reactivity. The Cornella group introduced a one-pot strategy for synthesizing aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis, which facilitates the transmetallation and direct insertion of SO2 into the BiC(sp2) bond giving the aryl sulfonyl fluorides. We report herein a comprehensive computational investigation of the redox-neutral Bi(III) catalytic mechanism, disclose the critical role of the Bi(III) catalyst and base (i.e., K3PO4), and uncover the origin of SO2 insertion into the Bi(III)C(sp2) bond. The entire catalysis can be characterized via three stages: (i) transmetallation generating the Bi(III)-phenyl intermediate IM3 facilitated by K3PO4. (ii) SO2 insertion into IM3 leading to the formation of Bi(III)-OSOAr intermediate IM5. (iii) IM5 undergoes S(IV)-oxidation yielding the aryl sulfonyl fluoride product 4 and liberating the Bi(III) catalyst for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. Moreover, we explored other some small molecules (NO2, CO2, H2O, N2O, etc.) insertion reactions mediated by the Bi(III)-complex, and found that NO2 insertions could be easily achieved due to the low insertion barriers (i.e., 17.5 kcal/mol). Based on the detailed mechanistic study, we further rationally designed additional Bi(III) and Sb(III) catalysts, and found that some of which exhibit promising potential for experimental realization due to their low barriers (<16.4 kcal/mol). In this regard, our study contributes significantly to enhancing current Bi(III)-catalytic systems and paving the way for novel Bi(III)-catalyzed aryl sulfonyl fluoride formation reactions.

18.
Biosens Bioelectron ; 267: 116756, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39244836

RÉSUMÉ

In view of the current serious situation of organophosphorus pesticides (OPs) residue contamination, developing rapid and accurate OPs sensors is a matter of urgency. Redox-nanozyme based colorimetric sensors have been widely researched and utilized in OPs residue determination, but overcoming the interference of external redox substances and the effect of single-signal modes on detection performance is still a challenge. Here we fabricated a Zr-based metal-organic framework (MOF) featuring specific phosphatase-like activity and strong aggregation-induced emission (AIE) fluorescence for redox interference-free bimodal pesticide sensing. In the MOF, the activity-tunable Zr4+ node offered high hydrolytic activity and affinity toward P-O containing substrates, and the rigid framework structure effectively enhanced the fluorescence emission of the ligand 1,1,2,2-tetra(4-carboxylphenyl)ethylene. The developed AIEzyme could efficiently catalyze the hydrolysis of paraoxon to yellow p-nitrophenol, which further reduced the intrinsic AIE fluorescence of AIEzyme through internal filtration effect. Thereby, a natural enzyme-free dual-mode colorimetric/fluorescence approach was established for paraoxon detection with no interference from redox substances, and a smartphone-assisted portable platform was further developed to enable the facile, rapid, and high-performance sensing of the pesticide in complex practical matrices.

19.
J Agric Food Chem ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39226432

RÉSUMÉ

Based on the modified cross-linking of the degradable natural polymers chitosan oligosaccharides (COS) and gelatin (GEL) via introduction of a functional bridge 3,3'-dithiodipropionic acid, this study constructed an environmentally responsive dinotefuran (DNF) delivery system (DNF@COS-SS-GEL). The introduction of the disulfide bond (-S-S-) endowed DNF@COS-SS-GEL with redox-responsive properties, allowing for the rapid release of pesticides when stimulated by glutathione (GSH) in the simulated insect. Compared with commercial DNF suspension concentrate (DNF-SC), DNF@COS-SS-GEL showed superior wet spreading and retention performance on cabbage leaves with a reduced contact angle (57°) at 180 s and 4-fold increased retention capacity after rainfall washout. Nanoencapsulation effectively improved the UV-photostability with only a 31.4% decomposition rate of DNF@COS-SS-GEL at 96 h. The small scale and large specific surface area resulted in excellent uptake and transportation properties in plants as well as higher bioactivity against Plutella xylostella larvae. This study will help promote sustainable agricultural development by reducing environmental pollution through improved pesticide utilization.

20.
Angew Chem Int Ed Engl ; : e202416350, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39247985

RÉSUMÉ

Covalent organic frameworks (COFs) have garnered attention for their potential in photocatalytic hydrogen peroxide (H2O2) production. However, their photocatalytic efficiency is impeded by insufficient exciton dissociation and charge carrier transport. Constructing COFs with superior planarity is an effective way to enhance the π-conjugation degree and facilitate electron-hole separation. Nonetheless, the conventional linear linkers of COFs inevitably introduce torsional strain that disrupts coplanarity.Herein, we address this issue by introducing inherently coplanar triazine rings as linkers and fused building blocks as monomers to create covalent triazine frameworks (fused CTFs) with superior coplanarity. Both experimental and theoretical calculations confirm that CTFs constructed from fused building blocks significantly enhance the electron-hole separation efficiency and improve the photocatalytic performance, compared to the CTFs constructed with non-fused building blocks. The frontier molecular orbitals and electrostatic potentials (ESP) revealed that the ORR is preferentially facilitated by the triazine rings, with the WOR likely occurring at the thiophene-containing moiety. Remarkably, CTF-BTT achieved an exceptional H2O2 production rate of 74956 µmol g-1 h-1 when employing 10% benzyl alcohol (V/V) as a sacrificial agent in an O2-saturated atmosphere, surpassing existing photocatalysts by nearly an order of magnitude.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE