Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 47
Filtrer
1.
Magn Reson Med ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39091132

RÉSUMÉ

PURPOSE: Compared with lower field strengths, DWI at 7 T faces the combined challenges of increased distortion and blurring due to B0 inhomogeneity, and increased signal dropouts due to B1 + inhomogeneity. This study addresses the B1 + limitations using slice-specific static parallel transmission (pTx) in a multi-shot, readout-segmented EPI diffusion imaging sequence. METHODS: DWI was performed in 7 healthy subjects using MRI at 7 T and readout-segmented EPI. Data were acquired with non-pTx circular-polarized (CP) pulses (CP-DWI) and static pTx pulses (pTx-DWI) using slice-specific B1 + shim coefficients. Each volunteer underwent two scan sessions on the same day, with two runs of each sequence in the first session and one run in the second. The sequences were evaluated by assessing image quality, flip-angle homogeneity, and intrasession and intersession repeatability in ADC estimates. RESULTS: pTx-DWI significantly reduced signal voids compared with CP-DWI, particularly in inferior brain regions. The use of pTx also improved RF uniformity and symmetry across the brain. These effects translated into improved intrasession and intersession repeatability for pTx-DWI. Additionally, re-optimizing the pTx pulse between repeat scans did not have a negative effect on ADC repeatability. CONCLUSION: The study demonstrates that pTx provides a reproducible image-quality increase in multishot DWI at 7 T. The benefits of pTx also extend to quantitative ADC estimation with regard to the improvement in intrasession and intersession repeatability. Overall, the combination of multishot imaging and pTx can support the development of reliable, high-resolution DWI for clinical studies at 7 T.

2.
Magn Reson Med ; 92(1): 43-56, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38303151

RÉSUMÉ

PURPOSE: To introduce universal modes by applying the universal pulse concept to time-interleaved acquisition of modes (TIAMO), thereby achieving calibration-free B 1 + $$ {B}_1^{+} $$ inhomogeneity mitigation for body imaging at ultra-high fields. METHODS: Two databases of different RF arrays were used to demonstrate the feasibility of universal modes. The first comprised 31 cardiac in vivo data sets acquired at 7T while the second consisted of 6 simulated 10.5T pelvic data sets. Subject-specific solutions and universal modes were computed and subsequently evaluated alongside predefined default modes. For the cardiac database, subdivision into subpopulations was investigated. The optimization was performed using least-squares (LS) TIAMO and acquisition modes optimized for refocused echoes (AMORE). Finally, universal modes based on simulated pelvis data were applied in vivo at 10.5T. RESULTS: In all studied cases, the universal modes yield improvements over the predefined default modes of up to 51% (cardiac) and 30% (pelvic) in terms of median excitation error when using two modes. The subpopulation-specific cardiac solutions revealed a further improvement of universal modes at the expense of increased errors when applied outside the appropriate subpopulation. Direct application of simulation-based universal modes in vivo resulted in up to a 14% reduction in excitation error compared to default modes and up to a 34% reduction in peak 10 g local specific absorption rate (SAR) compared to subject-specific solutions. CONCLUSIONS: Universal modes are feasible for calibration-free B 1 + $$ {B}_1^{+} $$ inhomogeneity mitigation at ultra-high fields. In addition, simulation-based solutions can be applied directly in vivo, eliminating the need for large in vivo databases.


Sujet(s)
Algorithmes , Coeur , Traitement d'image par ordinateur , Imagerie par résonance magnétique , Pelvis , Humains , Coeur/imagerie diagnostique , Traitement d'image par ordinateur/méthodes , Pelvis/imagerie diagnostique , Calibrage , Mâle , Adulte , Simulation numérique , Fantômes en imagerie , Femelle , Méthode des moindres carrés , Bases de données factuelles
3.
Magn Reson Med ; 91(3): 1165-1178, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37929768

RÉSUMÉ

PURPOSE: This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. METHODS: Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR. RESULTS: Constraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. CONCLUSION: Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.


Sujet(s)
Foetus , Imagerie par résonance magnétique , Femelle , Grossesse , Humains , Imagerie par résonance magnétique/méthodes , Foetus/imagerie diagnostique , Fantômes en imagerie , Ondes hertziennes , Simulation numérique
4.
Magn Reson Med ; 91(1): 190-204, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37794847

RÉSUMÉ

PURPOSE: Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS: A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS: The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION: B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.


Sujet(s)
Tête , Imagerie par résonance magnétique , Imagerie par résonance magnétique/méthodes , Tête/imagerie diagnostique , Cou/imagerie diagnostique , Artères carotides/imagerie diagnostique , Ondes hertziennes , Fantômes en imagerie
5.
NMR Biomed ; 36(10): e4981, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37173759

RÉSUMÉ

Homogeneity and longitudinal coverage of transmit (Tx) human head RF coils at ultrahigh field (UHF, ≥7 T) can be improved by 3D RF shimming, which requires using multi-row Tx arrays. Examples of 3D RF shimming using double-row UHF loop transceiver (TxRx) and Tx arrays have been described previously. Dipole antennas provide unique simplicity and robustness while offering comparable Tx efficiency and signal-to-noise ratio to conventional loop designs. Single-row Tx and TxRx human head UHF dipole arrays have been previously described by multiple groups. Recently, we developed a novel type of dipole antenna, a folded-end dipole, and presented single-row eight-element array prototypes for human head imaging at 7 and 9.4 T. These studies have shown that the novel antenna design can improve the longitudinal coverage and minimize peak local specific absorption rate (SAR) as compared with common unfolded dipoles. In this work, we developed, constructed, and evaluated a 16-element double-row TxRx folded-end dipole array for human head imaging at 9.4 T. To minimize cross-talk between neighboring dipoles located in different rows, we used transformer decoupling, which decreased coupling to a level below -20 dB. The developed array design was demonstrated to be capable of 3D static RF shimming and can be potentially used for dynamic shimming using parallel transmission. For optimal phase shifts between the rows, the array provides 11% higher SAR efficiency and 18% higher homogeneity than a folded-end dipole single-row array of the same length. The design also offers a substantially simpler and more robust alternative to the common double-row loop array with about 10% higher SAR efficiency and better longitudinal coverage.


Sujet(s)
Encéphale , Imagerie par résonance magnétique , Humains , Imagerie par résonance magnétique/méthodes , Fantômes en imagerie , Encéphale/imagerie diagnostique , Rapport signal-bruit , Conception d'appareillage
6.
Phys Eng Sci Med ; 46(2): 753-766, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36995580

RÉSUMÉ

Magnetic resonance electrical properties tomography (MREPT) is an emerging imaging modality to noninvasively measure tissue conductivity and permittivity. Implementation of MREPT in the clinic requires repeatable measurements at a short scan time and an appropriate protocol. The aim of this study was to investigate the repeatability of conductivity measurements using phase-based MREPT and the effects of compressed SENSE (CS), and RF shimming on the precision of conductivity measurements. Conductivity measurements using turbo spin echo (TSE) and three-dimensional balanced fast field echo (bFFE) with CS factors were repeatable. Conductivity measurement using bFFE phase showed smaller mean and variance that those measured by TSE. The conductivity measurements using bFFE showed minimal deviation with CS factors up to 8, with deviation increasing at CS factors > 8. Subcortical structures produced less consistent measurements than cortical parcellations at higher CS factors. RF shimming using full slice coverage 2D dual refocusing echo acquisition mode (DREAM) and full coverage 3D dual TR approaches further improved measurement precision. BFFE is a more optimal sequence than TSE for phase-based MREPT in brain. Depending on the area of the brain being measured, the scan can be safely accelerated with compressed SENSE without sacrifice of precision, offering the potential to employ MREPT in clinical research and applications. RF shimming with better field mapping further improves precision of the conductivity measures.


Sujet(s)
Imagerie par résonance magnétique , Tomographie , Imagerie par résonance magnétique/méthodes , Tomographie/méthodes , Spectroscopie par résonance magnétique , Encéphale/imagerie diagnostique , Conductivité électrique
7.
Magn Reson Imaging ; 92: 187-196, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35842192

RÉSUMÉ

PURPOSE: This study shows how inter-subject variation over a dataset of 72 head models results in specific absorption rate (SAR) and B1+ field homogeneity differences using common shim scenarios. METHODS: MR-CT datasets were used to segment 71 head models into 10 tissue compartments. These head models were affixed to the shoulders and neck of the virtual family Duke model and placed within an 8 channel transmit surface-loop array to simulate the electromagnetic fields of a 7T imaging experiment. Radio frequency (RF) shimming using the Gerchberg-Saxton algorithm and Circularly Polarized shim weights over the entire brain and select slices of each model was simulated. Various SAR metrics and B1+ maps were calculated to demonstrate the contribution of head variation to transmit inhomogeneity and SAR variability. RESULTS: With varying head geometries the loading for each transmit loop changes as evidenced by changes in S-parameters. The varying shim conditions and head geometries are shown to affect excitation uniformity, spatial distributions of local SAR, and SAR averaging over different pulse sequences. The Gerchberg-Saxton RF shimming algorithm outperforms circularly polarized shimming for all head models. Peak local SAR within the coil most often occurs nearest the coil on the periphery of the body. Shim conditions vary the spatial distribution of SAR. CONCLUSION: The work gives further support to the need for fast and more subject specific SAR calculations to maintain safety. Local SAR10g is shown to vary spatially given shim conditions, subject geometry and composition, and position within the coil.


Sujet(s)
Imagerie par résonance magnétique , Ondes hertziennes , Algorithmes , Encéphale/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Fantômes en imagerie
8.
Magn Reson Med ; 88(4): 1702-1719, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35692053

RÉSUMÉ

PURPOSE: To develop and evaluate a novel RF shimming optimization strategy tailored to improve the transmit efficiency in turbo spin echo imaging when performing time-interleaved acquisition of modes (TIAMO) at ultrahigh fields. THEORY AND METHODS: A nonlocalized efficiency shimming cost function is proposed and extended to perform TIAMO using acquisition modes optimized for refocused echoes (AMORE). The nonlocalized efficiency shimming was demonstrated in brain and knee imaging at 7 Tesla. Phantom and in vivo torso imaging studies were performed to compare the performance between AMORE and previously proposed TIAMO mode optimizations with and without localized constraints in turbo spin echo and gradient echo acquisitions. RESULTS: The proposed nonlocalized efficiency RF shimming produced a circularly polarized-like field with fewer signal dropouts in the brain and knee. For larger targets, AMORE was used and required a significantly lower transmitter voltage to produce a similar contrast to existing TIAMO mode design approaches for turbo spin echo as well as gradient echo acquisitions. In vivo, AMORE effectively reduced signal dropout in the interior torso while providing more uniform contrast with reduced transmit power. A local constraint further improved performance for a target region while maintaining performance in the larger FOV. CONCLUSION: AMORE based on the presented nonlocalized efficiency shimming cost function demonstrated improved contrast and SNR uniformity as well as increased transmit efficiency for both gradient echo and turbo spin echo acquisitions.


Sujet(s)
Interprétation d'images assistée par ordinateur , Imagerie par résonance magnétique , Algorithmes , Amélioration d'image/méthodes , Interprétation d'images assistée par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Fantômes en imagerie
9.
J Magn Reson ; 338: 107194, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35316747

RÉSUMÉ

Ratio adjustable power splitter (RAPS) circuits were recently proposed for add-on RF shimming. Previous RAPSs split the input RF signal with a Wilkinson splitter or 50-Ω-terminated hybrid coupler into two branches, delay these two signals with cable/microstrip line phase shifters, and recombine them with another hybrid coupler. They require resistors to provide high output isolation and a cable/microstrip line library to realize desired splitting ratios. Here we propose a novel resistor-free RAPS circuit in which the Wilkinson splitter/50-Ω-terminated hybrid is replaced with a resistor-free T-junction splitter. A novel sliding mechanism was employed to further combine the T-junction's output arms with subsequent phase shifters and realize a one-board-fits-all design. The resistor-free RAPS was theoretically analyzed, simulated, and validated on workbench and MRI experiments. The resistor-free RAPS's splitting ratio has a tan/cot dependence on the phase/length difference between the T-junction output arms. The ratio can be continuously adjusted to any value by sliding the input arm without additional cable/microstrip libraries, largely saving time and effort when determining the best RF weights in practice. The fabricated resistor-free RAPS has a compact size, excellent input impedance matching, and a low insertion loss. Potential safety concerns caused by unwanted power dissipation on RF resistors are eliminated. The simulation and MRI experiments demonstrated that the resistor-free RAPS functions well on a widely-used Tx coil.


Sujet(s)
Imagerie par résonance magnétique , Simulation numérique , Fantômes en imagerie
10.
Magn Reson Med ; 86(6): 3382-3390, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34286860

RÉSUMÉ

PURPOSE: A ratio adjustable power splitter (RAPS) circuit was recently proposed for add-on RF shimming and array-compressed parallel transmission. Here we propose a new RAPS circuit design based on off-the-shelf components for improved performance and manufacturability. THEORY AND METHODS: The original RAPS used a pair of home-built Wilkinson splitter and hybrid coupler connected by a pair of connectorized coaxial cables. Here we propose a new hybrid-pair RAPS (or HP-RAPS) circuit that replaces the home-built circuits with two commercially available hybrid couplers and replaces connectorized cables with interchangeable microstrip lines. We derive the relation between the desired splitting ratio and the required phase shifts for HP-RAPS and investigate how to generate arbitrary splitting ratios using paired meandering and straight lines. Several HP-RAPSs with different splitting ratios were fabricated and tested on the workbench and MRI experiments. RESULTS: The splitting ratio of an HP-RAPS circuit has a tan or cot dependence on the meandering line's additional length compared to the straight line. The fabricated HP-RAPSs exhibit accurate splitting ratios as expected (<4% deviations) and generate transmit fields that well agree with predicted fields. They also demonstrated a low insertion loss of 0.33 dB, high output isolation of -26 dB, and acceptable impedance matching of -16 dB. CONCLUSION: A novel HP-RAPS circuit was developed and implemented. It is easy-to-fabricate/reproduce with minimal expertise. It also preserves the features of the original RAPS circuit (ratio-adjustable, small footprint, etc.) with lower insertion loss.


Sujet(s)
Imagerie par résonance magnétique , Fantômes en imagerie
11.
Magn Reson Med ; 86(5): 2810-2821, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34240759

RÉSUMÉ

PURPOSE: This study investigates whether two-channel radiofrequency (RF) shimming can improve imaging without increasing specific absorption rate (SAR) for fetal MRI at 3T. METHODS: Transmit field ( B1+ ) average and variation in the fetus was simulated in seven numerical pregnant body models. Safety was quantified by maternal and fetal peak local SAR and fetal average SAR. The shim parameter space was divided into improved B1+ (magnitude and homogeneity) and improved SAR regions, and an overlap where RF shimming improved both classes of metrics compared with birdcage mode was assessed. Additionally, the effect of fetal position, tissue detail, and dielectric properties on transmit field and SAR was studied. RESULTS: A region of subject-specific RF shim parameter space improving both B1+ and SAR metrics was found for five of the seven models. Optimizing only B1+ metrics improved B1+ efficiency across models by 15% on average and 28% for the best-case model. B1+ variation improved by 26% on average and 49% for the best case. However, for these shim settings, fetal SAR increased by up to 106%. The overlap region, where both B1+ and SAR metrics improve, showed an average B1+ efficiency improvement of 6% on average across models and 19% for the best-case model. B1+ variation improved by 13% on average and 40% for the best case. RFS could also decrease maternal/fetal SAR by up to 49%/58%. CONCLUSION: RF shimming can improve imaging compared with birdcage mode without increasing fetal and maternal SAR when a patient-specific SAR model is incorporated into the shimming procedure.


Sujet(s)
Imagerie par résonance magnétique , Ondes hertziennes , Femelle , Foetus/imagerie diagnostique , Humains , Fantômes en imagerie , Grossesse
12.
Magn Reson Med ; 86(2): 611-624, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-33749010

RÉSUMÉ

PURPOSE: Achieving a desired RF transmit field ( B1+ ) in small regions of interest is critical for single-voxel MRS at ultrahigh field. Radio-frequency (RF) shimming, using parallel transmission, requires B1+ mapping and optimization, which limits its ease of use. This work aimed to generate calibration-free RF shims for predefined target regions of interest, which can be applied to any participant, to produce a desired absolute magnitude B1+ (| B1+ |). METHODS: The RF shims were found offline by joint optimization on a database comprising B1+ maps from 11 subjects, considering regions of interest in occipital cortex, hippocampus and posterior cingulate, as well as whole brain. The | B1+ | achieved was compared with a tailored shimming approach, and MR spectra were acquired using tailored and calibration-free shims in 4 participants. Global and local 10g specific-absorption-rate deposition were estimated using Duke and Ella dielectric models. RESULTS: There was no difference in the mean | B1+ | produced using calibration-free versus tailored RF shimming in the occipital cortex (p = .15), hippocampus (p = .5), or posterior cingulate (p = .98), although differences were observed in the RMS error | B1+ |. Spectra acquired using calibration-free shims had similar SNR and low residual water signal. Under identical power settings, specific-absorption-rate deposition was lower compared with operating in quadrature mode. For example, the total head specific absorption rate was around 35% less for the occipital cortex. CONCLUSION: This work demonstrates that static RF shims, optimized offline for small regions, avoid the need for B1+ mapping and optimization for each region of interest and participant. Furthermore, power settings may be increased when using calibration-free shims, to better take advantage of RF shimming.


Sujet(s)
Imagerie par résonance magnétique , Ondes hertziennes , Encéphale/imagerie diagnostique , Calibrage , Tête , Humains
13.
Magn Reson Med ; 85(6): 3463-3478, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33533500

RÉSUMÉ

PURPOSE: With increased interest in parallel transmission in ultrahigh-field MRI, methods are needed to correctly calculate the S-parameters and complex field maps of the parallel transmission coil. We present S-parameters paired with spatial field optimization to fully simulate a double-row 16-element transceiver array for brain MRI at 7 T. METHODS: We implemented a closed-form equation of the coil S-parameters and overall spatial B1+ field. We minimized a cost function, consisting of coil S-parameters and the B1+ homogeneity in brain tissue, by optimizing transceiver components, including matching, decoupling circuits, and lumped capacitors. With this, we are able to compare the in silico results determined with and without B1+ homogeneity weighting. Using the known voltage range from the host console, we reconstructed the B1+ maps of the array and performed RF shimming with four realistic head models. RESULTS: As performed with B1+ homogeneity weighting, the optimized coil circuit components were highly consistent over the four heads, producing well-tuned, matched, and decoupled coils. The mean peak forward powers and B1+ statistics for the head models are consistent with in vivo human results (N = 8). There are systematic differences in the transceiver components as optimized with or without B1+ homogeneity weighting, resulting in an improvement of 28.4 ± 7.5% in B1+ homogeneity with a small 1.9 ± 1.5% decline in power efficiency. CONCLUSION: This co-simulation methodology accurately simulates the transceiver, predicting consistent S-parameters, component values, and B1+ field. The RF shimming of the calculated field maps match the in vivo performance.


Sujet(s)
Imagerie par résonance magnétique , Simulation numérique , Phénomènes électromagnétiques , Conception d'appareillage , Humains , Fantômes en imagerie
14.
Magn Reson Med ; 84(6): 3453-3467, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-32627916

RÉSUMÉ

PURPOSE: To provide transmit whole-brain coverage at 9.4 T using an array with only eight elements and improve the specific absorption rate (SAR) performance, a novel dipole array was developed, constructed, and tested. METHODS: The array consists of eight optimized bent folded-end dipole antennas circumscribing a head. Due to the asymmetrical shape of the dipoles (bending and folding) and the presence of an RF shield near the folded portion, the array simultaneously excites two modes: a circular polarized mode of the array itself, and the TE mode ("dielectric resonance") of the human head. Mode mixing can be controlled by changing the length of the folded portion. Due to this mixing, the new dipole array improves longitudinal coverage as compared with unfolded dipoles. By optimizing the length of the folded portion, we can also minimize the peak local SAR (pSAR) value and decouple adjacent dipole elements. RESULTS: The new array improves the SEE (< B1+ >/√pSAR) value by about 50%, as compared with the unfolded bent dipole array. It also provides better whole-brain coverage compared with common single-row eight-element dipole arrays, or even to a more complex double-row 16-element surface loop array. CONCLUSION: In general, we demonstrate that rather than compensating for the constructive interference effect using additional hardware, we can use the "dielectric resonance" to improve coverage, transmit field homogeneity, and SAR efficiency. Overall, this design approach not only improves the transmit performance in terms of the coverage and SAR, but substantially simplifies the common surface loop array design, making it more robust, and therefore safer.


Sujet(s)
Amis , Imagerie par résonance magnétique , Conception d'appareillage , Tête/imagerie diagnostique , Humains , Fantômes en imagerie
15.
NMR Biomed ; 33(11): e4383, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32725650

RÉSUMÉ

Transmit efficiency specifies the amplitude of the magnetic resonance excitation field produced over a region of interest with respect to the radiofrequency (RF) power deposited in the sample. This metric is highly important at ultra-high field magnetic resonance imaging (≥7 T), where excitation inhomogeneities and electric field interference effects could prevent achieving the desired flip angle distribution while satisfying the power safety limits. The aim of this work was to introduce an approach to calculate a theoretical upper bound on the transmit efficiency (OPTXE) for RF shimming, independent from any particular coil design. We computed the OPTXE for head-mimicking uniform spherical samples and a realistic heterogeneous head model by maximizing the square of the net transmit field per unit power deposition. The corresponding RF shimming weights were used to combine the analytical surface current modes into ideal current patterns. OPTXE grew monotonically as the target excitation voxel approached the surface of the object, and overall decreased at higher field strengths, presenting similar trends in both the uniform sphere and heterogeneous head model. Arrays with an increasing number of loops could closely approach OPTXE in the central region of the object, but performance decreased closer to the surface and at higher magnetic field strengths. The performance of 32 loops for a two-dimensional excitation region at 7 T increased from 34% to 93% when they were arranged based on the shape of the ideal current patterns. OPTXE provides an absolute reference to evaluate coil designs and RF shimming algorithms, whereas ideal current patterns could serve as guidelines for novel coil designs at ultra-high field. The uniform sphere model enables rapid analytic simulations and provides a good approximation of the OPTXE distribution in a realistic heterogeneous head model with comparable dimensions.


Sujet(s)
Imagerie par résonance magnétique , Ondes hertziennes , Encéphale/imagerie diagnostique , Électricité , Humains , Champs magnétiques
16.
Magn Reson Med ; 84(2): 777-786, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-31971634

RÉSUMÉ

PURPOSE: To improve the labeling efficiency of pseudo-continuous arterial spin labeling (PCASL) at 7T using parallel transmission (pTx). METHODS: Five healthy subjects were scanned on an 8-channel-transmit 7T human MRI scanner. Time-of-flight (TOF) angiography was acquired to identify regions of interest (ROIs) around the 4 major feeding arteries to the brain, and B1+ and B0 maps were acquired in the labeling plane for tagging pulse design. Complex weights of the labeling pulses for each of the 8 transmit channels were calculated to produce a homogenous radiofrequency (RF) -shimmed labeling across the ROIs. Variable-Rate Selective Excitation (VERSE) pulses were also implemented as a part of the labeling pulse train. Whole-brain perfusion-weighted images were acquired under conditions of RF shimming, VERSE with RF shimming, and standard circularly polarized (CP) mode. The same subjects were scanned on a 3T scanner for comparison. RESULTS: In simulation, VERSE with RF shimming improved the flip-angles across the ROIs in the labeling plane by 90% compared with CP mode. VERSE with RF shimming improved the temporal signal-to-noise ratio by 375% compared with CP mode, but did not outperform a matched 3T sequence with a matched flip-angle. CONCLUSION: We have demonstrated improved PCASL tagging at 7T using VERSE with RF shimming on a commercial head coil under conservative SAR limits at 7T. However, improvements of 7T over 3T may require strategies with less conservative SAR restrictions.


Sujet(s)
Algorithmes , Traitement d'image par ordinateur , Artères , Encéphale/imagerie diagnostique , Humains , Imagerie par résonance magnétique , Marqueurs de spin
17.
Magn Reson Imaging ; 66: 69-85, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31733267

RÉSUMÉ

PURPOSE: To investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow. THEORY AND METHODS: A gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T. RESULTS: Phantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s). CONCLUSIONS: The use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.


Sujet(s)
Artéfacts , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Fantômes en imagerie , Algorithmes , Humains
18.
J Magn Reson ; 307: 106567, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31476633

RÉSUMÉ

Preclinical MR applications at 17.2 T can require field of views on the order of a few square centimeters. This is a challenging task as the proton Larmor frequency reaches 730 MHz. Most of the protocols at such frequencies are performed with surface transceiver coils for which the sensitive volume and the signal to noise ratio (SNR) is given by their size. Here we propose an approach based on metamaterials in order to enhance the sensitive volume of a commercial surface coil for small animal imaging at 17.2 T. We designed a passive resonator composed of four hybridized electric dipoles placed onto the floor of the MRI bed. Combining numerical and experimental results on a phantom and in vivo, we demonstrate a 20% increase of the sensitive volume in depth and 25% along the rostro-caudal axis while maintaining more than 85% of the local SNR right beneath the surface coil plane. Moreover, our solution gives the ability to double the average SNR in the region between 1.2 and 2 cm away from the loop using a single layer of 1 mm thick metallic wires easy to design and manufacture.

19.
J Magn Reson ; 305: 195-208, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31306985

RÉSUMÉ

The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.


Sujet(s)
Coeur/imagerie diagnostique , Imagerie par résonance magnétique/instrumentation , Animaux , Conception d'appareillage , Études de faisabilité , Fantômes en imagerie , Ondes hertziennes , Rapport signal-bruit , Suidae
20.
Neuroimage ; 195: 1-10, 2019 07 15.
Article de Anglais | MEDLINE | ID: mdl-30923027

RÉSUMÉ

The Human Connectome Project (HCP) has a 7T component that aims to study the human brain's organization and function with high spatial and temporal resolution fMRI and diffusion-weighted acquisitions. For whole brain applications at 7T, a major weakness however remains the heterogeneity of the radiofrequency transmission field (B1+ ), which prevents from achieving an optimal signal and contrast homogeneously throughout the brain. In this work, we use parallel transmission (pTX) Universal Pulses (UP) to improve the flip angle homogeneity and demonstrate their application to highly accelerated multi-band EPI (MB5 and GRAPPA2, as prescribed in the 7T HCP protocol) sequence, but also to acquire at 7T B1+ -artefact-free T1 - and T2 -weighted anatomical scans used in the pre-processing pipeline of the HCP protocol. As compared to typical implementations of pTX, the proposed solution is fully operator-independent and allows "plug and play" exploitation of the benefits offered by multi-channel transmission. Validation in five healthy adults shows that the proposed technique achieves a flip angle homogeneity comparable to that of a clinical 3 T system. Compared to standard single-channel transmission, the use of UPs at 7T yielded up to a two-fold increase of the temporal signal-to-noise ratio in the temporal lobes as well as improved detection of functional connectivity in the brain regions most strongly affected by B1+ inhomogeneity.


Sujet(s)
Encéphale/physiologie , Connectome/méthodes , Traitement d'image par ordinateur/méthodes , Adulte , Imagerie échoplanaire/méthodes , Femelle , Humains , Mâle , Repos/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE