Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
BMC Biol ; 22(1): 14, 2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-38273313

RÉSUMÉ

BACKGROUND: Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS: Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS: Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.


Sujet(s)
Aedes , Dengue , Infection par le virus Zika , Virus Zika , Animaux , Aedes/génétique , Protéines de transport/génétique , Vecteurs moustiques/génétique , ARN double brin/génétique , ARN double brin/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Virus Zika/génétique , Virus Zika/métabolisme
2.
J Biol Chem ; 295(44): 14973-14986, 2020 10 30.
Article de Anglais | MEDLINE | ID: mdl-32843480

RÉSUMÉ

Lipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms. We envisioned that the development of an organismal model system might provide new opportunities to interrogate LA biochemistry, biology, and physiology. Here we report our investigations on three Caenorhabditis elegans orthologous proteins involved in this post-translational modification. We established that M01F1.3 is a lipoyl synthase, ZC410.7 an octanoyltransferase, and C45G3.3 an amidotransferase. Worms subjected to RNAi against M01F1.3 and ZC410.7 manifest larval arrest in the second generation. The arrest was not rescued by LA supplementation, indicating that endogenous synthesis of LA is essential for C. elegans development. Expression of the enzymes M01F1.3, ZC410.7, and C45G3.3 completely rescue bacterial or yeast mutants affected in different steps of the lipoylation pathway, indicating functional overlap. Thus, we demonstrate that, similarly to humans, C. elegans is able to synthesize LA de novo via a lipoyl-relay pathway, and suggest that this nematode could be a valuable model to dissect the role of protein mislipoylation and to develop new therapies.


Sujet(s)
Caenorhabditis elegans/métabolisme , Modèles biologiques , Acide lipoïque/métabolisme , Animaux , Bacillus subtilis/génétique , Caenorhabditis elegans/enzymologie , Caenorhabditis elegans/croissance et développement , Protéines de Caenorhabditis elegans/métabolisme , Métabolisme énergétique , Escherichia coli/génétique , Acides gras/biosynthèse , Lipoylation , Neurones/métabolisme , Interférence par ARN , Acide lipoïque/génétique
3.
Front Physiol ; 8: 256, 2017.
Article de Anglais | MEDLINE | ID: mdl-28503153

RÉSUMÉ

Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

4.
Insect Mol Biol ; 22(6): 648-58, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-23980723

RÉSUMÉ

Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux.


Sujet(s)
Aedes/effets des médicaments et des substances chimiques , Larve/effets des médicaments et des substances chimiques , Téméfos , Sous-famille B de transporteurs à cassette liant l'ATP , Transporteurs ABC/métabolisme , Séquence d'acides aminés , Animaux , Expression des gènes/effets des médicaments et des substances chimiques , Résistance aux insecticides/génétique , Données de séquences moléculaires , Mortalité , Quinidine/pharmacologie , Vérapamil/pharmacologie
5.
Genet Mol Biol ; 35(2): 538-44, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-22888305

RÉSUMÉ

Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

6.
Drug Target Insights ; 2: 183-96, 2007.
Article de Anglais | MEDLINE | ID: mdl-21901073

RÉSUMÉ

The notorious biotechnological advance of the last few decades has allowed the development of experimental methods for understanding molecular mechanisms of genes and new therapeutic approaches. Gene therapy is maturing into a viable, practical method with the potential to cure a variety of human illnesses. Some nucleic-acid-based drugs are now available for controlling the progression of genetic diseases by inhibiting gene expression or the activity of their gene products. New therapeutic strategies employ a wide range of molecular tools such as bacterial plasmids containing transgenic inserts, RNA interference and aptamers. A nucleic-acid based constitution confers a lower immunogenic potential and as result of the high stringency selection of large molecular variety, these drugs have high affinity and selectivity for their targets. However, nucleic acids have poor biostability thus requiring chemical modifications and delivery systems to maintain their activity and ease their cellular internalization. This review discusses some of the mechanisms of action and the application of therapies based on nucleic acids such as aptamers and RNA interference as well as platforms for cellular uptake and intracellular delivery of therapeutic oligonucleotides and their trade-offs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE