Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cells ; 12(2)2023 01 11.
Article de Anglais | MEDLINE | ID: mdl-36672220

RÉSUMÉ

The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.


Sujet(s)
Mélatonine , Glande pinéale , Rats , Souris , Humains , Animaux , Glande pinéale/métabolisme , Mélatonine/pharmacologie , Mélatonine/métabolisme , Trétinoïne/pharmacologie , Trétinoïne/métabolisme , Transduction du signal , Mammifères/métabolisme
2.
J Mol Endocrinol ; 69(4): T37-T49, 2022 11 01.
Article de Anglais | MEDLINE | ID: mdl-35900851

RÉSUMÉ

Vitamin A (retinol) is a critical micronutrient required for the control of stem cell functions, cell differentiation, and cell metabolism in many different cell types, both during embryogenesis and in the adult organism. However, we must obtain vitamin A from food sources. Thus, the uptake and metabolism of vitamin A by intestinal epithelial cells, the storage of vitamin A in the liver, and the metabolism of vitamin A in target cells to more biologically active metabolites, such as retinoic acid (RA) and 4-oxo-RA, must be precisely regulated. Here, I will discuss the enzymes that metabolize vitamin A to RA and the cytochrome P450 Cyp26 family of enzymes that further oxidize RA. Because much progress has been made in understanding the regulation of ALDH1a2 (RALDH2) actions in the intestine, one focus of this review is on the metabolism of vitamin A in intestinal epithelial cells and dendritic cells. Another focus is on recent data that 4-oxo-RA is a ligand required for the maintenance of hematopoietic stem cell dormancy and the important role of RARß (RARB) in these stem cells. Despite this progress, many questions remain in this research area, which links vitamin A metabolism to nutrition, immune functions, developmental biology, and nuclear receptor pharmacology.


Sujet(s)
Trétinoïne , Rétinol , Cytochrome P-450 enzyme system , Famille-26 de cytochromes P450 , Ligands , Micronutriments , Trétinoïne/métabolisme , Rétinol/métabolisme
3.
Front Immunol ; 13: 935465, 2022.
Article de Anglais | MEDLINE | ID: mdl-35844620

RÉSUMÉ

Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.


Sujet(s)
Tumeurs , Rétinol , Alcohol oxidoreductases/génétique , Alcohol oxidoreductases/métabolisme , Immunothérapie , Cellules T mémoire , Tumeurs/thérapie , Trétinoïne/pharmacologie , Rétinol/métabolisme
4.
Cancer Biomark ; 34(4): 673-679, 2022.
Article de Anglais | MEDLINE | ID: mdl-35634847

RÉSUMÉ

BACKGROUND: Ovarian clear cell carcinomas (OCCCs) have been recurrent and refractory among the present treatments, so novel therapeutics are urgently needed. OBJECTIVE: The present study accumulates the proof of concept to examine the feasibility of RDH10 as a therapeutic target for treating OCCCs. METHODS: Immunohistochemically, RDH10 expression was evaluated in 111 primary epithelial ovarian cancers, including 55 OCCCs, 31 ovarian endometrioid carcinomas and 25 ovarian serous carcinomas. The spherogenecity provoked by RDH10 was evaluated in OCCC cells. To analyze whether RDH10 promotes carbohydrate storage via the vitamin A-gluconeogenesis pathway, phosphoenolpyruvate carboxykinase 1 (PCK1) protein levels and intracellular carbohydrate content were measured in response to modified RDH10 expression. RESULTS: Abundant RDH10 was expressed specifically in OCCCs. RDH10 promoted spherogenecity and intracellular carbohydrate storage via modulation of PCK1 expression in OCCC cells. CONCLUSIONS: In the present study, abundant RDH10 contributed to cancer cell stemness and intracellular carbohydrate storage in OCCCs. RDH10 is a potentially, new therapeutic candidate for treating OCCC cases.


Sujet(s)
Adénocarcinome à cellules claires , Alcohol oxidoreductases , Métabolisme glucidique , Cellules souches tumorales , Tumeurs de l'ovaire , Adénocarcinome à cellules claires/métabolisme , Alcohol oxidoreductases/métabolisme , Femelle , Humains , Tumeurs de l'ovaire/métabolisme
5.
J Dent Res ; 101(6): 686-694, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35001679

RÉSUMÉ

Embryonic craniofacial development depends on the coordinated outgrowth and fusion of multiple facial primordia, which are populated with cranial neural crest cells and covered by the facial ectoderm. Any disturbance in these developmental events, their progenitor tissues, or signaling pathways can result in craniofacial deformities such as orofacial clefts, which are among the most common birth defects in humans. In the present study, we show that Rdh10 loss of function leads to a substantial reduction in retinoic acid (RA) signaling in the developing frontonasal process during early embryogenesis, which results in a variety of craniofacial anomalies, including midfacial cleft and ectopic chondrogenic nodules. Elevated apoptosis and perturbed cell proliferation in postmigratory cranial neural crest cells and a substantial reduction in Alx1 and Alx3 transcription in the developing frontonasal process were associated with midfacial cleft in Rdh10-deficient mice. More important, expanded Shh signaling in the ventral forebrain, as well as partial abrogation of midfacial defects in Rdh10 mutants via inhibition of Hh signaling, indicates that misregulation of Shh signaling underlies the pathogenesis of reduced RA signaling-associated midfacial defects. Taken together, these data illustrate the precise spatiotemporal function of Rdh10 and RA signaling during early embryogenesis and their importance in orchestrating molecular and cellular events essential for normal midfacial development.


Sujet(s)
Bec-de-lièvre , Fente palatine , Malformations crâniofaciales , Animaux , Bec-de-lièvre/génétique , Fente palatine/génétique , Malformations crâniofaciales/génétique , Développement embryonnaire , Protéines Hedgehog/métabolisme , Souris , Crête neurale , Trétinoïne
6.
J Biol Chem ; 297(3): 101101, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34419449

RÉSUMÉ

The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.


Sujet(s)
Alcohol oxidoreductases/métabolisme , Muscles squelettiques/métabolisme , Adiposité , Alcohol oxidoreductases/génétique , Animaux , Alimentation riche en graisse , Complexe IV de la chaîne respiratoire/métabolisme , Métabolisme énergétique/génétique , Métabolisme énergétique/physiologie , Femelle , Intolérance au glucose/métabolisme , Insulinorésistance , Métabolisme lipidique , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Muscles squelettiques/physiologie , Muscles/métabolisme , Oxydoréduction , Endurance physique/physiologie , Course à pied/physiologie , Caractères sexuels , Facteurs sexuels , Trétinoïne/métabolisme
7.
J Biol Chem ; 296: 100323, 2021.
Article de Anglais | MEDLINE | ID: mdl-33485967

RÉSUMÉ

Liver is the central metabolic hub that coordinates carbohydrate and lipid metabolism. The bioactive derivative of vitamin A, retinoic acid (RA), was shown to regulate major metabolic genes including phosphoenolpyruvate carboxykinase, fatty acid synthase, carnitine palmitoyltransferase 1, and glucokinase among others. Expression levels of these genes undergo profound changes during adaptation to fasting or in metabolic diseases such as type 1 diabetes (T1D). However, it is unknown whether the levels of hepatic RA change during metabolic remodeling. This study investigated the dynamics of hepatic retinoid metabolism and signaling in the fed state, in fasting, and in T1D. Our results show that fed-to-fasted transition is associated with significant decrease in hepatic retinol dehydrogenase (RDH) activity, the rate-limiting step in RA biosynthesis, and downregulation of RA signaling. The decrease in RDH activity correlates with the decreased abundance and altered subcellular distribution of RDH10 while Rdh10 transcript levels remain unchanged. In contrast to fasting, untreated T1D is associated with upregulation of RA signaling and an increase in hepatic RDH activity, which correlates with the increased abundance of RDH10 in microsomal membranes. The dynamic changes in RDH10 protein levels in the absence of changes in its transcript levels imply the existence of posttranscriptional regulation of RDH10 protein. Together, these data suggest that the downregulation of hepatic RA biosynthesis, in part via the decrease in RDH10, is an integral component of adaptation to fasting. In contrast, the upregulation of hepatic RA biosynthesis and signaling in T1D might contribute to metabolic inflexibility associated with this disease.


Sujet(s)
Alcohol oxidoreductases/génétique , Diabète de type 1/métabolisme , Rétinoïdes/métabolisme , Trétinoïne/métabolisme , Animaux , Carnitine O-palmitoyltransferase/génétique , Diabète de type 1/génétique , Diabète de type 1/anatomopathologie , Modèles animaux de maladie humaine , Jeûne/métabolisme , Régulation de l'expression des gènes codant pour des enzymes/génétique , Glucokinase/génétique , Humains , Foie/enzymologie , Foie/métabolisme , Métabolisme/génétique , Souris , Microsomes du foie/métabolisme , Phosphoenolpyruvate carboxykinase (ATP)/génétique , Rétinoïdes/génétique , Transduction du signal/génétique
8.
Development ; 147(15)2020 08 07.
Article de Anglais | MEDLINE | ID: mdl-32665247

RÉSUMÉ

Retinoic acid (RA), a vitamin A (retinol) derivative, has pleiotropic functions during embryonic development. The synthesis of RA requires two enzymatic reactions: oxidation of retinol into retinaldehyde by alcohol dehydrogenases (ADHs) or retinol dehydrogenases (RDHs); and oxidation of retinaldehyde into RA by aldehyde dehydrogenases family 1, subfamily A (ALDH1as), such as ALDH1a1, ALDH1a2 and ALDH1a3. Levels of RA in tissues are regulated by spatiotemporal expression patterns of genes encoding RA-synthesizing and -degrading enzymes, such as cytochrome P450 26 (Cyp26 genes). Here, we show that RDH10 is important for both sensory and non-sensory formation of the vestibule of the inner ear. Mice deficient in Rdh10 exhibit failure of utricle-saccule separation, otoconial formation and zonal patterning of vestibular sensory organs. These phenotypes are similar to those of Aldh1a3 knockouts, and the sensory phenotype is complementary to that of Cyp26b1 knockouts. Together, these results demonstrate that RDH10 and ALDH1a3 are the key RA-synthesis enzymes involved in vestibular development. Furthermore, we discovered that RA induces Cyp26b1 expression in the developing vestibular sensory organs, which generates the differential RA signaling required for zonal patterning.


Sujet(s)
Homéostasie , Organogenèse , Trétinoïne/métabolisme , Labyrinthe vestibulaire/embryologie , Alcohol oxidoreductases/génétique , Alcohol oxidoreductases/métabolisme , Animaux , Souris , Souris knockout , Retinal dehydrogenase/génétique , Retinal dehydrogenase/métabolisme , Retinoic acid 4-hydroxylase/génétique , Retinoic acid 4-hydroxylase/métabolisme , Labyrinthe vestibulaire/cytologie
9.
Methods Enzymol ; 637: 77-93, 2020.
Article de Anglais | MEDLINE | ID: mdl-32359661

RÉSUMÉ

All-trans-retinoic acid (RA) is a bioactive lipid that influences many processes in embryonic and adult tissues. Given its bioactive nature, cellular concentrations of this molecule are highly regulated. The oxidation of all-trans-retinol to all-trans-retinaldehyde represents the first and rate-limiting step of the RA synthesis pathway. As such, it is the target of mechanisms that fine-tune RA levels within the cell. RDH10 is one enzyme responsible for the oxidation of all-trans-retinol to all-trans-retinaldehyde, and together with the all-trans-retinaldehyde reductase DHRS3 forms an oligomeric protein complex. The resulting retinoid oxidoreductase complex (ROC) is bifunctional and has the capacity to regulate steady-state levels of the direct precursor of RA, all-trans-retinaldehyde. As ROC represents a major regulatory element within the RA synthesis pathway, it is essential that methods are in place that allow for the study of this complex. Here we describe the production and isolation of recombinant ROC using a baculovirus expression system. Recombinant proteins retain enzymatic activities in intact microsomes and can be affinity purified for analysis. These methods can be used to assist in the assessment of ROC properties and the regulation of this protein complex's functional attributes.


Sujet(s)
Alcohol oxidoreductases , Rétinoïdes , Alcohol oxidoreductases/génétique , Oxidoreductases , Rétinal , Trétinoïne
10.
Dis Model Mech ; 12(7)2019 07 03.
Article de Anglais | MEDLINE | ID: mdl-31300413

RÉSUMÉ

Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development.


Sujet(s)
Alcohol oxidoreductases/physiologie , Bouche/embryologie , Palais/embryologie , Animaux , Fente palatine/étiologie , Fente palatine/physiopathologie , Modèles animaux de maladie humaine , Souris , Bouche/physiologie , Mouvement , Rétinoïdes/déficit
11.
J Biol Chem ; 294(14): 5536-5548, 2019 04 05.
Article de Anglais | MEDLINE | ID: mdl-30737277

RÉSUMÉ

Ethanol (EtOH) is a teratogen, but its teratogenic mechanisms are not fully understood. The alcohol form of vitamin A (retinol/ROL) can be oxidized to all-trans-retinoic acid (RA), which plays a critical role in stem cell differentiation and development. Using an embryonic stem cell (ESC) model to analyze EtOH's effects on differentiation, we show here that EtOH and acetaldehyde, but not acetate, increase differentiation-associated mRNA levels, and that EtOH decreases pluripotency-related mRNAs. Using reporter assays, ChIP assays, and retinoic acid receptor-γ (RARγ) knockout ESC lines generated by CRISPR/Cas9 and homologous recombination, we demonstrate that EtOH signals via RARγ binding to RA response elements (RAREs) in differentiation-associated gene promoters or enhancers. We also report that EtOH-mediated increases in homeobox A1 (Hoxa1) and cytochrome P450 family 26 subfamily A member 1 (Cyp26a1) transcripts, direct RA target genes, require the expression of the RA-synthesizing enzyme, aldehyde dehydrogenase 1 family member A2 (Aldh1a2), suggesting that EtOH-mediated induction of Hoxa1 and Cyp26a1 requires ROL from the serum. As shown with CRISPR/Cas9 knockout lines, the retinol dehydrogenase gene Rdh10 and a functional RARE in the ROL transporter stimulated by retinoic acid 6 (Stra6) gene are required for EtOH induction of Hoxa1 and Cyp26a1 We conclude that EtOH stimulates stem cell differentiation by increasing the influx and metabolism of ROL for downstream RARγ-dependent transcription. In stem cells, EtOH may shift cell fate decisions to alter developmental outcomes by increasing endogenous ROL/RA signaling via increased Stra6 expression and ROL oxidation.


Sujet(s)
Différenciation cellulaire/effets des médicaments et des substances chimiques , Éthanol/pharmacologie , Cellules souches embryonnaires de souris/métabolisme , Récepteurs à l'acide rétinoïque/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Aldehyde dehydrogenase/biosynthèse , Aldehyde dehydrogenase/génétique , Aldéhyde déshydrogénase-1 , Animaux , Différenciation cellulaire/génétique , Protéines à homéodomaine/biosynthèse , Protéines à homéodomaine/génétique , Protéines membranaires/biosynthèse , Protéines membranaires/génétique , Souris , Souris knockout , Cellules souches embryonnaires de souris/cytologie , Récepteurs à l'acide rétinoïque/génétique , Retinal dehydrogenase , Retinoic acid 4-hydroxylase/biosynthèse , Retinoic acid 4-hydroxylase/génétique , Transduction du signal/génétique , Facteurs de transcription/biosynthèse , Facteurs de transcription/génétique ,
12.
Development ; 145(19)2018 10 10.
Article de Anglais | MEDLINE | ID: mdl-30305274

RÉSUMÉ

Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.


Sujet(s)
Cristallin/embryologie , Cristallin/métabolisme , Transduction du signal , Trétinoïne/métabolisme , Aldehyde dehydrogenase/métabolisme , Animaux , Plan d'organisation du corps/effets des médicaments et des substances chimiques , Embryon de poulet , Corps ciliaire/effets des médicaments et des substances chimiques , Corps ciliaire/métabolisme , Collagène/métabolisme , Régulation négative/effets des médicaments et des substances chimiques , Régulation négative/génétique , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Cristallin/anatomie et histologie , Cristallin/effets des médicaments et des substances chimiques , Taille d'organe/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/métabolisme , Ténascine/métabolisme , Trétinoïne/pharmacologie , Rétinol/pharmacologie
13.
Development ; 145(15)2018 08 02.
Article de Anglais | MEDLINE | ID: mdl-29986869

RÉSUMÉ

In mammals, the epithelial tissues of major salivary glands generate saliva and drain it into the oral cavity. For submandibular salivary glands (SMGs), the epithelial tissues arise during embryogenesis from naïve oral ectoderm adjacent to the base of the tongue, which begins to thicken, express SOX9 and invaginate into underlying mesenchyme. The developmental mechanisms initiating salivary gland development remain unexplored. In this study, we show that retinoic acid (RA) signaling activity at the site of gland initiation is colocalized with expression of retinol metabolic genes Rdh10 and Aldh1a2 in the underlying SMG mesenchyme. Utilizing a novel ex vivo assay for SMG initiation developed for this study, we show that RDH10 and RA are required for salivary gland initiation. Moreover, we show that the requirement for RA in gland initiation involves canonical signaling through retinoic acid receptors (RAR). Finally, we show that RA signaling essential for gland initiation is transduced specifically through RARα, with no contribution from other RAR isoforms. This is the first study to identify a molecular signal regulating mammalian salivary gland initiation.


Sujet(s)
Alcohol oxidoreductases/physiologie , Récepteurs à l'acide rétinoïque/métabolisme , Glandes salivaires/embryologie , Glande submandibulaire/embryologie , Trétinoïne/métabolisme , Rétinol/métabolisme , Alcohol oxidoreductases/génétique , Animaux , Embryon de mammifère , Développement embryonnaire/effets des médicaments et des substances chimiques , Développement embryonnaire/génétique , Femelle , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Grossesse , Récepteurs à l'acide rétinoïque/génétique , Glandes salivaires/effets des médicaments et des substances chimiques , Glandes salivaires/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Glande submandibulaire/effets des médicaments et des substances chimiques , Glande submandibulaire/métabolisme , Trétinoïne/pharmacologie
14.
Methods Mol Biol ; 1753: 89-102, 2018.
Article de Anglais | MEDLINE | ID: mdl-29564783

RÉSUMÉ

The retinal pigmented epithelium (RPE) is a single layer of polarized epithelial cells which plays many important roles for visual function. One of such roles is production of visual chromophore, 11-cis-retinal through the visual cycle. The visual cycle consists of biochemical processes for regenerating chromophore by a collective action of the RPE and photoreceptor. Photoreceptors harbor the G protein-coupled receptors, opsin which enables to receive light when it bounds to 11-cis-retinal. With absorption of a photon of light, 11-cis-retinal photoisomerizes to all-trans-retinal. All-trans-retinal reduces to all-trans-retinol in the photoreceptor and further recycles back to 11-cis-retinal in the RPE. Acyltransferases and isomerohydrolase(s) along with retinol dehydrogenases sequentially convert all-trans-retinol to 11-cis-retinal in the RPE. Dysfunctions of any retinoid cycle enzymes in the RPE can cause retinal diseases. Phenotyping RPE functions by the use of mutant mouse models will provide great detailed biochemical insights of the visual cycle and further manipulative strategies to protect against retinal degeneration. Here, we describe biochemical analyses of the visual cycle in mouse models using RPE cells.


Sujet(s)
Dosages enzymatiques/méthodes , Culture de cellules primaires/méthodes , Dégénérescence de la rétine/anatomopathologie , Rétinoïdes/analyse , Acyltransferases/génétique , Acyltransferases/métabolisme , Alcohol oxidoreductases/génétique , Alcohol oxidoreductases/métabolisme , Animaux , Modèles animaux de maladie humaine , Électrorétinographie/instrumentation , Électrorétinographie/méthodes , Dosages enzymatiques/instrumentation , Cellules épithéliales , Analyse de profil d'expression de gènes/instrumentation , Analyse de profil d'expression de gènes/méthodes , Humains , Souris , Souris knockout , Mutation , Phénotype , Cellules photoréceptrices de vertébré/métabolisme , Culture de cellules primaires/instrumentation , Dégénérescence de la rétine/imagerie diagnostique , Dégénérescence de la rétine/génétique , Épithélium pigmentaire de la rétine/cytologie , Épithélium pigmentaire de la rétine/imagerie diagnostique , Épithélium pigmentaire de la rétine/métabolisme , Rétinoïdes/métabolisme , Cis-trans-isomerases/génétique , Cis-trans-isomerases/métabolisme
15.
Mol Neurobiol ; 55(11): 8219-8235, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-29520716

RÉSUMÉ

Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.


Sujet(s)
Rythme circadien , Régulation négative , Extracellular Signal-Regulated MAP Kinases/métabolisme , Glande pinéale/métabolisme , Transduction du signal , Trétinoïne/métabolisme , Aldéhyde déshydrogénase-1 , Animaux , Arylalkylamine N-Acetyltransferase/biosynthèse , Arylalkylamine N-Acetyltransferase/génétique , Rythme circadien/génétique , Obscurité , Régulation négative/effets des médicaments et des substances chimiques , Induction enzymatique/effets des médicaments et des substances chimiques , Mâle , Modèles biologiques , Norépinéphrine/pharmacologie , Phosphorylation/effets des médicaments et des substances chimiques , Rat Sprague-Dawley , Retinal dehydrogenase/métabolisme , Retinoic acid 4-hydroxylase/métabolisme , Récepteur alpha de l'acide rétinoïque/métabolisme , Transcription génétique/effets des médicaments et des substances chimiques , Trétinoïne/pharmacologie
16.
Oncotarget ; 8(62): 105262-105275, 2017 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-29285249

RÉSUMÉ

Retinol dehydrogenase-10 (RDH10) is a member of the short-chain dehydrogenase/reductase family, which plays an important role in retinoic acid (RA) synthesis. Here, we show that RDH10 is highly expressed in human gliomas, and its expression correlates with tumor grade and patient survival times. In vitro, lentivirus-mediated shRNA knockdown of RDH10 suppressed glioma cell proliferation, survival, and invasiveness and cell cycle progression. In vivo, RDH10 knockdown reduced glioma growth in nude mice. Microarray analysis revealed that RDH10 silencing reduces expression of TNFRSF12A (Fn14), TNFSF12 (TWEAK), TRAF3, IKBKB (IKK-ß), and BMPR2, while it increases expression of TRAF1, NFKBIA (IκBα), NFKBIE (IκBε), and TNFAIP3. This suggests that RDH10 promotes glioma cell proliferation and survival by regulating the TWEAK-NF-κB axis, and that it could potentially serve as a novel target for human glioma treatment.

17.
Nutrients ; 8(12)2016 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-27983671

RÉSUMÉ

Embryonic development is orchestrated by a small number of signaling pathways, one of which is the retinoic acid (RA) signaling pathway. Vitamin A is essential for vertebrate embryonic development because it is the molecular precursor of the essential signaling molecule RA. The level and distribution of RA signaling within a developing embryo must be tightly regulated; too much, or too little, or abnormal distribution, all disrupt embryonic development. Precise regulation of RA signaling during embryogenesis is achieved by proteins involved in vitamin A metabolism, retinoid transport, nuclear signaling, and RA catabolism. The reversible first step in conversion of the precursor vitamin A to the active retinoid RA is mediated by retinol dehydrogenase 10 (RDH10) and dehydrogenase/reductase (SDR family) member 3 (DHRS3), two related membrane-bound proteins that functionally activate each other to mediate the interconversion of retinol and retinal. Alcohol dehydrogenase (ADH) enzymes do not contribute to RA production under normal conditions during embryogenesis. Genes involved in vitamin A metabolism and RA catabolism are expressed in tissue-specific patterns and are subject to feedback regulation. Mutations in genes encoding these proteins disrupt morphogenesis of many systems in a developing embryo. Together these observations demonstrate the importance of vitamin A metabolism in regulating RA signaling during embryonic development in vertebrates.


Sujet(s)
Développement embryonnaire/physiologie , Vertébrés/embryologie , Rétinol/métabolisme , Alcohol oxidoreductases/métabolisme , Animaux , Humains , Transduction du signal/physiologie , Trétinoïne/métabolisme
18.
Subcell Biochem ; 81: 127-161, 2016.
Article de Anglais | MEDLINE | ID: mdl-27830503

RÉSUMÉ

Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.


Sujet(s)
Trétinoïne/métabolisme , Aldehyde dehydrogenase/métabolisme , Animaux , Transport biologique , Membrane cellulaire/enzymologie , Famille-26 de cytochromes P450/métabolisme , Cytosol/enzymologie , Rétrocontrôle physiologique , Prévision , Humains , Isoenzymes/métabolisme , Souris , Microsomes du foie/enzymologie , Oxydoréduction , Oxidoreductases/métabolisme , Rats , Protéines recombinantes/métabolisme , Rétinal/métabolisme , Rétinol/métabolisme
19.
J Biol Chem ; 290(45): 27239-27247, 2015 Nov 06.
Article de Anglais | MEDLINE | ID: mdl-26391396

RÉSUMÉ

Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5(-/-)Rdh11(-/-) mice as compared with Rdh5(-/-) mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5(-/-) and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision.


Sujet(s)
Alcohol oxidoreductases/déficit , Adaptation à l'obscurité/physiologie , Épithélium pigmentaire de la rétine/enzymologie , Alcohol oxidoreductases/génétique , Alcohol oxidoreductases/métabolisme , Animaux , Femelle , Expression des gènes , Cinétique , Mâle , Souris , Souris de souche-129 , Souris de lignée C57BL , Souris knockout , Oxidoreductases/déficit , Oxidoreductases/génétique , Oxidoreductases/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Dégénérescence de la rétine/enzymologie , Dégénérescence de la rétine/étiologie , Épithélium pigmentaire de la rétine/anatomie et histologie , Épithélium pigmentaire de la rétine/physiologie , Rétinal/biosynthèse , Rétinoïdes/métabolisme , Cellules Sf9 , Spodoptera
20.
Dev Biol ; 407(1): 57-67, 2015 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-26278034

RÉSUMÉ

Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis.


Sujet(s)
Développement embryonnaire/effets des médicaments et des substances chimiques , Glande submandibulaire/embryologie , Trétinoïne/pharmacologie , Alcohol oxidoreductases/physiologie , Animaux , Mésoderme/métabolisme , Souris , Morphogenèse , Transduction du signal , Trétinoïne/métabolisme , Rétinol/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE