Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 13.728
Filtrer
1.
Heliyon ; 10(16): e35835, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39224344

RÉSUMÉ

Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.

2.
Chem Biol Interact ; : 111219, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39222902

RÉSUMÉ

Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterized BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.

3.
J Am Geriatr Soc ; 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39230284

RÉSUMÉ

BACKGROUND: Influenza vaccines are available to help protect persons aged ≥65 years, who experience thousands of influenza hospitalizations annually. Because some influenza vaccines may work better than others, we sought to assess benefit of high-dose (HD), adjuvanted (ADJ), and recombinant (RIV) influenza vaccines ("enhanced influenza vaccines") compared with standard-dose unadjuvanted influenza vaccines (SD) and with one another for prevention of influenza-associated hospitalizations among persons aged ≥65 years. METHODS: We searched MEDLINE, Embase, CINAHL, Scopus, and Cochrane Library to identify randomized or observational studies published between January 1990 and October 2023 and reporting relative vaccine effectiveness (rVE) of HD, ADJ, or RIV for prevention of influenza-associated hospitalizations among adults aged ≥65 years. We extracted study data, assessed risk of bias, and conducted random-effects network meta-analysis and meta-regression. RESULTS: We identified 32 studies with 90 rVE estimates from five randomized and 27 observational studies (71,459,918 vaccinated participants). rVE estimates varied across studies and influenza seasons. Pooled rVE from randomized studies was 20% (95% CI -54 to 59) and 25% (95% CI -19 to 53) for ADJ and HD compared with SD, respectively; rVE was 6% (95% CI -109 to 58) for HD compared with ADJ; these differences were not statistically significant. In observational studies, ADJ, HD, and RIV conferred modestly increased protection compared with SD (rVE ranging from 10% to 19%), with no significant differences between HD, ADJ, and RIV. With enhanced vaccines combined, rVE versus SD was 18% (95% CI 3 to 32) from randomized and 11% (95% CI 8 to 14) from observational evidence. Meta-regression of observational studies suggested that those requiring laboratory confirmation of influenza reported greater benefit of enhanced vaccines. CONCLUSIONS: HD, ADJ, and RIV provided stronger protection than SD against influenza hospitalizations among older adults. No differences in benefit were observed in comparisons of enhanced influenza vaccines with one another.

4.
Sci Rep ; 14(1): 20856, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39242806

RÉSUMÉ

At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.


Sujet(s)
Cricetulus , Protéines recombinantes , Cellules CHO , Animaux , Protéines recombinantes/génétique , Protéines recombinantes/biosynthèse , Protéines recombinantes/métabolisme , Vecteurs génétiques/génétique , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Cricetinae , , Milieux de culture/composition chimique
5.
Article de Anglais | MEDLINE | ID: mdl-39245907

RÉSUMÉ

Escherichia coli has shouldered a massive workload with the discovery of recombinant DNA technology. A new era began in the biopharmaceutical industry with the production of insulin, the first recombinant protein, in E. coli and its use in treating diabetes. After insulin, many biopharmaceuticals produced from E. coli have been approved by the US Food and Drug Administration and the European Medicines Agency to treat various human diseases. Although E. coli has some disadvantages, such as lack of post-translational modifications and toxicity, it is an important host with advantages such as being a well-known bacterium in recombinant protein production, cheap, simple production system, and high yield. This study examined biopharmaceuticals produced and approved in E. coli under the headings of peptides, hormones, enzymes, fusion proteins, antibody fragments, vaccines, and other pharmaceuticals. The topics on which these biopharmaceuticals were approved for treating human diseases, when and by which company they were produced, and their use and development in the field are included.

6.
BMC Ophthalmol ; 24(1): 395, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39237907

RÉSUMÉ

BACKGROUND: Pars Plana Vitrectomy (PPV) combined with subretinal injection of low-dose recombinant tissue plasminogen activator (rt-PA) and intravitreal injection of Conbercept as a novel therapy for submacular hemorrhage (SMH) requires evaluation. METHODS: In a retrospective interventional clinical study, 14 eyes of 14 patients with SMH underwent PPV along with rt-PA (subretinal) and Conbercept (intravitreal) injections. The main outcomes included best-corrected visual acuities (BCVAs), degrees of blood displacement, and adverse events. All patients completed at least 6-month follow-up visits. RESULTS: Mean BCVAs significantly improved at 7 days (22.29 ± 15.35), 1 month (30.71 ± 16.42), 3 months (38.29 ± 13.72), 4 months (38.86 ± 14.15), and 6 months (41.21 ± 14.91) post-treatment compared to baseline (16.36 ± 13.97) (F = 12.89, P = 0.004). The peak improvement in BCVAs occurred at 6 months postoperatively. The procedure effectively eliminated subfoveal hemorrhages in all eyes, with clots removal and absorption occurring within one month and complete regression by 3-month follow-up visits. Postoperatively, two cases of AMD resulted in discoid scars on the fundus. No instances of rt-PA-related retinal toxicity were observed during the follow-up period. CONCLUSION: The combined approach of PPV with low-dose rt-PA and anti-VEGF shows promise in enhancing both vision and anatomical structure in SMH therapy. Individualized treatment plans tailored to the primary disease should be developed to optimize visual prognoses. TRIAL REGISTRATION: Retrospectively registered No.ChiCTR2100053034. Registration date: 10/11/2021.


Sujet(s)
Injections intravitréennes , Protéines de fusion recombinantes , Hémorragie de la rétine , Activateur tissulaire du plasminogène , Acuité visuelle , Vitrectomie , Humains , Activateur tissulaire du plasminogène/administration et posologie , Activateur tissulaire du plasminogène/usage thérapeutique , Études rétrospectives , Mâle , Femelle , Hémorragie de la rétine/traitement médicamenteux , Hémorragie de la rétine/étiologie , Hémorragie de la rétine/diagnostic , Acuité visuelle/physiologie , Adulte d'âge moyen , Protéines de fusion recombinantes/administration et posologie , Protéines de fusion recombinantes/usage thérapeutique , Sujet âgé , Vitrectomie/méthodes , Fibrinolytiques/administration et posologie , Fibrinolytiques/usage thérapeutique , Association thérapeutique , Tomographie par cohérence optique , Études de suivi , Association de médicaments , Angiographie fluorescéinique
7.
Poult Sci ; 103(11): 104227, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39217665

RÉSUMÉ

Salmonella is a globally prevalent foodborne pathogen, and adverse events caused by S. Enteritidis and S. Typhimurium are extremely common. With the emergence of drug resistance, there is an urgent need for efficient and specific lytic bacteriophages as alternative to antibiotics in clinical practice. In this study, phage P6 was isolated and screened from effluent and fecal samples from duck farm environments to specifically lyse the duck sources S. Typhimurium and S. Enteritidis. Phage P6 belongs to the genus Lederbergvirus, unclassified Lederbergvirus species. The phage P6 genome did not contained non-coding RNA, virulence genes and drug resistance genes, indicating that phage P6 was biologically safe for clinical applications. Phage P6 lysed 77.78% (28/36) of multidrug-resistant Salmonella and reduced biofilms formed by S. Enteritidis CVCC 3377, 4, and 24, and S. Typhimurium 44 by 44% to 75% within 3 h, and decreased Salmonella in duckling feces by up to 1.64 orders of magnitude. Prokaryotic expression of endolysin LysP6 lysed the chloroform-treated bacterial outer membrane from different serotypes of duck-derived Salmonella and E. coli standard strain ATCC 25922. The host range was expanded compared to phage P6, and the growth of Salmonella was effectively inhibited by LysP6 in conjunction with the membrane permeabilizer EDTA within 24 h. Therefore, phage P6 and phage-derived endolysins LysP6 are suitable for application as potent biocontrol agents to improve poultry health and food safety.

8.
Cytokine ; 183: 156745, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39217914

RÉSUMÉ

The recombinant Staphylococcal protein A (SpA) is widely used in biotechnology to purify polyclonal and monoclonal IgG antibodies. At very low concentrations, the highly-purified form of the protein A can down-regulate the activation of human B-lymphocytes and macrophages which are the key cells in determining autoimmune diseases. In the present study, the efficiency of three different forms of protein A, including native full-length SpA, the recombinant full-length SpA, and a recombinant truncated form of SpA on the reduction of 4 inflammatory cytokines, including IL-8, IL-1ß, TNF-α, and IL-6 by peripheral blood mononuclear cell (PBMCs) were studied and compared to an anti-rheumatoid arthritis commercial drug, Enbrel. The recombinant proteins were expressed in E. coli and the native form of SpA was commercially provided. PBMCs were obtained from adult patients with active rheumatoid arthritis (RA) and healthy control donors. Then, the effect of different doses of the three pure forms of SpA in comparison with Enbrel was investigated by analyzing the expression of selected cytokines using ELISA. The results showed that the truncated form of recombinant SpA significantly reduced the expression of cytokines more effectively than the other full-length formulations as well as the commercial drug Enbrel. In silico analysis shows that in the truncated protein, as the radius of gyration increases, the structure of IgG-binding domains become more open and more exposed to IgG. To summarize, our findings indicate that the truncated form of protein A is the most efficient form of SpA as it significantly decreases the secretion of evaluated cytokines from PBMCs in vitro.

9.
Front Microbiol ; 15: 1459402, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247689

RÉSUMÉ

Introduction: Monoclonal antibodies (mAbs) play a pivotal role in disease diagnosis as well as immunotherapy interventions. Traditional monoclonal antibody generation relies on animal immunization procedures predominantly involving mice; however, recent advances in in-vitro expression methodologies have enabled large-scale production suitable for both industrial applications as well as scientific investigations. Methods: In this study, two mAbs against H7 subtype avian influenza viruses (AIV) were sequenced and analyzed, and the DNA sequences encoding heavy chain (HC) and light chain (LC) were obtained and cloned into pCHO-1.0 expression vector. Then, the HC and LC expression plasmids were transfected into CHO-S cells to establish stable cell lines expressing these mAbs using a two-phase selection scheme with different concentrations of methotrexate and puromycin. Recombinant antibodies were purified from the cell culture medium, and their potential applications were evaluated using hemagglutination inhibition (HI), western blotting (WB), confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). Results: The results indicated that the obtained recombinant antibodies exhibited biological activity similar to that of the parent antibodies derived from ascites and could be used as a replacement for animal-derived mAbs. A kinetic analysis of the two antibodies to the AIV HA protein, conducted using surface plasmon resonance (SPR), showed concordance between the recombinant and parental antibodies. Discussion: The data presented in this study suggest that the described antibody production protocol could avoid the use of experimental animals and better conform to animal welfare regulations, and provides a basis for further research and development of mAbs-based diagnostic products.

10.
J Biomol Tech ; 35(2)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39238896

RÉSUMÉ

The cold-shock expression system in Escherichia coli was developed on a manual induction approach using optical density at 600 nm (OD600) measurements and isopropyl ß-D-1-thiogalactopyranoside (IPTG) addition. In this study, we show that cold-shock expression performs equally well using an autoinduction approach wherein OD600 measurements and IPTG addition may be eliminated. We further demonstrate that cold-shock expression with autoinduction can better facilitate high-throughput experiments.


Sujet(s)
Escherichia coli , Isopropyl-1-thio-bêta-D-galactopyranoside , Escherichia coli/génétique , Escherichia coli/métabolisme , Isopropyl-1-thio-bêta-D-galactopyranoside/pharmacologie , Régulation de l'expression des gènes bactériens , Réponse au choc froid/génétique , Basse température , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme
11.
Int J Biol Macromol ; 279(Pt 2): 135254, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39233152

RÉSUMÉ

The serine protease gene was heterologously expressed in Escherichia coli BL21 (DE3) using the PET 28a vector. The purified enzyme was immobilized on a nanohybrid of amino graphene and chitosan. The characterization of synthesized nanohybrids and immobilized enzymes was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). Immobilization increased the temperature optimum from 60 to 70 °C for both free and immobilized enzymes, while the optimal pH of the enzymes did not change post-immobilization (pH 8). The immobilized biocatalyst significantly enhanced thermal stability, as well as enzyme stability at significant pH ranges. After 30 days of storage, the immobilized enzymes exhibited approximately 83 % of their relative activity, while the free protease retained only 56 % of its initial activity. Stabilization also altered the kinetic parameters (increasing Km, decreasing Kcat/Km, and Vmax) and thermodynamic parameters (increasing enzyme half-life and activation energy). The study's outcomes represent a significant advancement in the realm of enzyme synthesis and its stabilization using several combined technologies, including enzyme production with recombinant DNA technology based on gene synthesis, and its stabilization using a hybrid substrate synthesized from nanomaterials. Based on these findings, the immobilized recombinant enzyme has high potential for industrial use as an efficient and stable biocatalyst.

12.
Int J Cardiol ; 416: 132507, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39218251

RÉSUMÉ

BACKGROUND: While surgery still remains the gold standard treatment for mechanical prosthetic valve thrombosis (MPVT) by many guidelines, the ultraslow low-dose thrombolytic regimen has been reported as a promising alternative. METHODS: In this prospective single-center cohort, patients with acute MPVT were treated with an ultraslow low-dose thrombolytic regimen consisting of 25 mg infusion of recombinant tissue-type plasminogen activator (rtPA) over 25 h. The regimen could be repeated in case of failure until resolution/occurrence of adverse events or a maximum cumulative dose of 150 mg. The primary outcome was the complete MPVT resolution rate; other outcomes included first-dose success rate, major bleeding, thromboembolic events, mortality, and total thrombolytic dose/duration. RESULTS: Between April 2018 to January 2024, 135 episodes of acute MPVT were treated with an ultraslow low-dose thrombolytic regimen in 118 patients. In 118/135 (87.4 %) episodes, right-sided prosthetic valve was involved. Complete success was achieved in 88.1 % of cases, with 39.5 % responding after the first dose. The median total dose was 50 mg over a median of 30 h. Only one fatal intracranial hemorrhage occurred (0.7 %), with no other bleeding or thromboembolic complications. CONCLUSION: The ultraslow low-dose thrombolytic regimen appears to exhibit high efficacy and acceptable safety in treating acute MPVT. Further large clinical trials are essential for validating these preliminary findings.

13.
Front Cell Infect Microbiol ; 14: 1454076, 2024.
Article de Anglais | MEDLINE | ID: mdl-39233906

RÉSUMÉ

Introduction: Mycobacterium tuberculosis, the causative agent of human tuberculosis, poses a significant threat to global public health and imposes a considerable burden on the economy. However, existing laboratory diagnostic methods for M. tuberculosis are time-consuming and have limited sensitivity levels. Methods: The CRISPR/Cas system, commonly known as the "gene scissors", demonstrates remarkable specificity and efficient signal amplification capabilities. Enzymatic recombinase amplification (ERA) was utilized to rapidly amplify trace DNA fragments at a consistent temperature without relying on thermal cyclers. By integrating of CRISPR/Cas12a with ERA, we successfully developed an ERA-CRISPR/Cas12a detection system that enables rapid identification of M. tuberculosis. Results: The sensitivity of the ERA-CRISPR/Cas12a fluorescence and lateral flow systems was 9 copies/µL and 90 copies/µL, respectively. Simultaneously, the detection system exhibited no cross-reactivity with various of respiratory pathogens and non-tuberculosis mycobacteria, demonstrating a specificity of 100%. The positive concordance rate between the ERA-CRISPR/Cas12a fluorescence system and commercial qPCR was 100% in 60 clinical samples. Meanwhile, the lateral flow system showed a positive concordance rate of 93.8% when compared to commercial qPCR. Both methods demonstrated a negative concordance rate of 100%, and the test results can be obtained in 50 min at the earliest. Discussion: The ERA-CRISPR/Cas12a system offers a rapid, sensitive, and specific method that presents a novel approach to laboratory diagnosis of M. tuberculosis.


Sujet(s)
Systèmes CRISPR-Cas , Mycobacterium tuberculosis , Techniques d'amplification d'acides nucléiques , Sensibilité et spécificité , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/isolement et purification , Humains , Techniques d'amplification d'acides nucléiques/méthodes , Tuberculose/diagnostic , Tuberculose/microbiologie , Recombinases/métabolisme , Recombinases/génétique , Techniques de diagnostic moléculaire/méthodes , Protéines bactériennes/génétique , ADN bactérien/génétique , Protéines associées aux CRISPR/génétique , Endodeoxyribonucleases
14.
BMC Genomics ; 25(1): 822, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223519

RÉSUMÉ

BACKGROUND: Traditional recombinant inbred lines (RILs) are generated from repeated self-fertilization or brother-sister mating from the F1 hybrid of two inbred parents. Compared with the F2 population, RILs cumulate more crossovers between loci and thus increase the number of recombinants, resulting in an increased resolution of genetic mapping. Since they are inbred to the isogenic stage, another consequence of the heterozygosity reduction is the increased genetic variance and thus the increased power of QTL detection. Self-fertilization is the primary form of developing RILs in plants. Brother-sister mating is another way to develop RILs but in small laboratory animals. To ensure that the RILs have at least 98% of homozygosity, we need about seven generations of self-fertilization or 20 generations of brother-sister mating. Prior to homozygosity, these lines are called pre-recombinant inbred lines (PRERIL). Phenotypic values of traits in PRERILs are often collected but not used in QTL mapping. To perform QTL mapping in PRERILs, we need the recombination fraction between two markers at generation t for t < 7 (selfing) or t < 20 (brother-sister mating) so that the genotypes of QTL flanked by the markers can be inferred. RESULTS: In this study, we developed formulas to calculate the recombination fractions of PRERILs at generation t in self-fertilization, brother-sister mating, and random mating. In contrast to existing works in this topic, we used computer code to construct the transition matrix to form the Markov chain of genotype array between consecutive generations, the so-called recurrent equations. CONCLUSIONS: We provide R functions to calculate the recombination fraction using the newly developed recurrent equations of ordered genotype array. With the recurrent equations and the R code, users can perform QTL mapping in PRERILs. Substantial time and effort can be saved compared with QTL mapping in RILs.


Sujet(s)
Croisement consanguin , Locus de caractère quantitatif , Recombinaison génétique , Cartographie chromosomique , Homozygote , Modèles génétiques , Génotype , Phénotype
15.
J Med Virol ; 96(9): e29900, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39234788

RÉSUMÉ

Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.


Sujet(s)
Hepacivirus , Hépatite C , Développement de vaccin , Vaccins contre les hépatites virales , Humains , Vaccins contre les hépatites virales/immunologie , Hépatite C/prévention et contrôle , Hépatite C/immunologie , Hepacivirus/immunologie , Hepacivirus/génétique , Anticorps neutralisants/immunologie , Vaccins sous-unitaires/immunologie , Animaux , Vaccins inactivés/immunologie
16.
Iran J Biotechnol ; 22(2): e3772, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-39220334

RÉSUMÉ

Background: Coagulation factor VIII (FVIII) is applied for spontaneous hemorrhaging inhibition and excessive bleeding after trauma in patients with hemophilia A. High-quality human recombinant factor VIII (rFVIII) has been produced relatively in large quantities in cultured mammalian cells. NS0 is one of the most common mammalian cell lines for therapeutic protein production. Production of rFVIII has increased due to low FVIII expression levels and rising demand for hemophilia A prophylactic treatment. Several methods have been developed to prevent cell cycle progression in mammalian cells for increased recombinant protein yields. Objective: The aim of the study was to investigate the level of recombinant BDD-FVIII expression in NS0 mouse myeloma cells. Additionally, the study aimed to determine the effects of chemical drugs, Mitomycin C, Lovastatin, and Metformin on the secretion of FVIII through cell cycle arrest. Materials and Methods: We cultured NS0 cells and transfected them with the 2 µg pcDNA3-hBDDFVIII plasmid by Lipofectamine 3000. The cells were treated with 10 µg.mL-1 Mitomycin C, 20 µM Lovastatin, and 20 mM Metformin separately. After 24 and 48 hours, the samples were collected and, protein expression was analyzed using RT-PCR, Dot blot, and ELISA. Results: A higher protein expression level was observed in treated cells 24h and 48h after treatment with all three drugs. According to real-time PCR, Metformin treatment resulted in the highest expression level within 24 h (P=0.0026), followed by Mitomycin C treatment within 48 h (P=0.0030). Conclusion: The NS0 cell line can be regarded as a suitable host for FVIII production. FVIII protein expression level was increased by using Lovastatin, Metformin, and Mitomycin C drugs. Further investigations are suggested, and the potential application of these drugs to increase recombinant protein yield can be used to produce therapeutic proteins in the industry.

17.
Regen Biomater ; 11: rbae097, 2024.
Article de Anglais | MEDLINE | ID: mdl-39220741

RÉSUMÉ

Cartilage defects are frequently caused by trauma, illness and degradation of the cartilage. If these defects are not sufficiently treated, the joints will degrade irreversibly, possibly resulting in disability. Articular cartilage lacks blood vessels and nerves and is unable to regenerate itself, so the repair of cartilage defects is extremely challenging in clinical treatment. Tissue engineering technology is an emerging technology in cartilage repair and cartilage regeneration. 3D-printed hydrogels show great potential in cartilage tissue engineering for the fabrication of 3D cell culture scaffolds to mimic extracellular matrix. In this study, we construct a 3D-printed hydrogel loaded with nanoparticles by electrostatic interaction and photo cross-linking for the regeneration of cartilage, which has adaptable and drug-continuous release behavior. A photopolymerizable bioink was prepared using recombinant collagen, chitosan, nanoclay Laponite-XLG and nanoparticles loaded with Kartogenin (KGN). This bioink was added with KGN, a small molecule drug that promotes cartilage differentiation, and as a result, the 3D-printed CF/CM/3%LAP/KGN scaffolds obtained by extrusion printing is expected to be used for cartilage repair. It was shown that the 3D-printed scaffolds had good cytocompatibility for human bone marrow mesenchymal stem cells (hBMSCs) and exhibited excellent antimicrobial properties, the continuous release of KGN in the scaffold induced the hBMSCs differentiation into chondrocytes, which significantly enhanced the expression of collagen II and glycosaminoglycan. In vivo studies have shown that implantation of KGN-loaded scaffolds into cartilage-injured tissues promoted cartilage tissue regeneration. This study demonstrated that 3D-printed CF/CM/3%LAP/KGN scaffolds can be used for cartilage repair, which is expected to lead to new healing opportunities for cartilage injury-based diseases.

18.
Cell Host Microbe ; 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39243760

RÉSUMÉ

The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.

19.
J Virol Methods ; : 115029, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39243818

RÉSUMÉ

The silkworm-baculovirus expression vector system (silkworm-BEVS), using Bombyx mori nucleopolyhedrovirus (BmNPV) and silkworm larvae or pupae, has been used as a cost-effective expression system for the production of various recombinant proteins. Recently, several gene knockouts in baculoviruses have been shown to improve the productivity of recombinant proteins. However, the gene editing of the baculovirus genome (approximately 130kb) remains challenging and time-consuming. In this study, we sought to further enhance the productivity of the silkworm-BEVS by synthesizing and gene editing the BmNPV bacmid from plasmids containing fragments of BmNPV genomic DNA using a two-step Golden Gate Assembly (GGA). The BmNPV genome, divided into 19 fragments, was amplified by PCR and cloned into the plasmids. From these initial plasmids, four intermediate plasmids containing the BmNPV genomic DNA were constructed by GGA with the type IIS restriction enzyme BsaI. Subsequently, the full-length bacmid was successfully synthesized from the four intermediate plasmids by GGA with another type IIS restriction enzyme PaqCI with a high efficiency of 97.2%. Furthermore, this methodology enabled the rapid and straightforward generation of the BmNPV bacmid lacking six genes, resulting in the suppression of degradation of recombinant proteins expressed in silkworm pupae. These results indicate that the BmNPV bacmid can be quickly and efficiently edited using only simple cloning techniques and enzymatic reactions, marking a significant advancement in the improvement of the silkworm-BEVS.

20.
Vaccine ; 42(24): 126291, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39241355

RÉSUMÉ

Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). While BCG protects against TB in children, its protection against pulmonary TB in adults is suboptimal, and the development of a better TB vaccine is a global health priority. Previously, we reported two recombinant BCG strains effective against murine TB with low virulence and lung pathology in immunocompromised mice and guinea pigs. We have recently combined these two recombinant BCG strains into one novel vaccine candidate (BCGΔBCG1419c::ESAT6-PE25SS) and evaluated its immunogenicity, efficacy and safety profile in mice. This new vaccine candidate is non-inferior to BCG in protection against TB, presents reduced pro-inflammatory immune responses and displays an enhanced safety profile.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE