Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 112
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sensors (Basel) ; 24(18)2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-39338881

RÉSUMÉ

Although the physical properties of a structure, such as stiffness, can be determined using some statical tests, the identification of damping parameters requires a dynamic test. In general, both theoretical prediction and experimental identification of damping are quite difficult. There are many different techniques available for damping identification, and each method gives a different damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant vibration tests are commonly used to identify the damping of materials, including soft materials. While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to describe the damping of materials, there are also other parameters, such as the specific damping capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping of various materials. Often, one of these parameters is measured, and the measured parameter needs to be converted into another damping parameter for comparison purposes. In this review, the theoretical derivations of different parameters for the description and quantification of damping and their relationships are presented. The expressions for both high damping and low damping are included and evaluated. This study is considered as the first comprehensive review article presenting the theoretical derivations of a large number of damping parameters and the relationships among many damping parameters, with a quantitative evaluation of accurate and approximate formulas. This paper could be a primary resource for damping research and teaching.

2.
Polymers (Basel) ; 16(18)2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39339081

RÉSUMÉ

Enhanced oil recovery (EOR) methods are generally employed in depleted reservoirs to increase the recovery factor beyond that of water flooding. Polymer flooding is one of the major EOR methods. EOR polymer solutions (especially the synthetic ones characterized by flexible chains) that flow through porous media are not only subjected to shearing forces but also extensional deformation, and therefore, they exhibit not only Newtonian and shear thinning behavior but also shear thickening behavior at a certain porous media shear rate/velocity. Shear rheometry has been widely used to characterize the rheological properties of EOR polymer systems. This paper aims to investigate the effect of the polymers' concentrations, ranging from 25 ppm to 2500 ppm, on the viscous, linear, and non-linear viscoelastic properties of hydrolyzed polyacrylamide (HPAM) in shear field and porous media. The results observed indicate that viscous properties such as Newtonian viscosity increase monotonically with the increase in concentration in both fields. However, linear viscoelastic properties, such as shear characteristic time, were absent for concentrations not critical in both shear rheometry and porous media. Beyond the critical association concentration (CAC), the modified shear thinning index decreases in terms of concentration in both fields, signifying their intensified thinning. At those concentrations higher than CAC, the viscoelastic onset rate remains constant in both fields. In both fields, the shear thickening index, a strict non-linear viscoelastic property, initially increases with concentration and then decreases with concentration, signifying that the polymer chains do not stretch significantly at higher concentrations. Also, another general observation is that the rheological properties of the polymer solutions in both porous media and shear rheometry only follow a similar trend if the concentration is higher than the CAC. At concentrations less than the CAC, the shear and porous media onset rates follow different trends, possibly due to the higher inertial effect in the rheometer.

3.
Biomed Phys Eng Express ; 10(5)2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39102840

RÉSUMÉ

Background:Dispersion presents both a challenge and a diagnostic opportunity in shear wave elastography (SWE).Shear Wave Rheometry(SWR) is an inversion technique for processing SWE data acquired using an acoustic radiation force impulse (ARFI) excitation. The main advantage of SWR is that it can characterize the shear properties of homogeneous soft media over a wide frequency range. Assumptions associated with SWR include tissue homogeneity, tissue isotropy, and axisymmetry of the ARFI excitation).Objective:Evaluate the validity of the SWR assumptions in ex vivo bovine liver.Approach:SWR was used to measure the shear properties of bovine liver tissue as function of frequency over a large frequency range. Assumptions associated with SWR (tissue homogeneity, tissue isotropy, and axisymmetry of the ARFI excitation) were evaluated through measurements performed at multiple locations and probe orientations. Measurements focused on quantities that would reveal violations of the assumptions.Main results:Measurements of shear properties were obtained over the 25-250 Hz range, and showed a 4-fold increase in shear storage modulus (from 1 to 4 kPa) and over a 10-fold increase in the loss modulus (from 0.2 to 3 kPa) over that decade-wide frequency range. Measurements under different conditions were highly repeatable, and model error was low in all cases.Significance and Conclusion:SWR depends on modeling the ARFI-induced shear wave as a full vector viscoelastic shear wave resulting from an axisymmetric source; it is agnostic to any specific rheological model. Despite this generality, the model makes three main simplifying assumptions. These results show that the modeling assumptions used in SWR are valid in bovine liver over a wide frequency band.


Sujet(s)
Imagerie d'élasticité tissulaire , Foie , Rhéologie , Animaux , Bovins , Foie/imagerie diagnostique , Imagerie d'élasticité tissulaire/méthodes , Rhéologie/méthodes , Résistance au cisaillement , Module d'élasticité
4.
ACS Biomater Sci Eng ; 10(8): 5014-5026, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-38982893

RÉSUMÉ

Achieving rapid clotting and clot stability are important unmet goals of clinical management of noncompressible hemorrhage. This study reports the development of a spatiotemporally controlled release system of an antihemorrhagic drug, etamsylate, in the management of internal hemorrhage. Gly-Arg-Gly-Asp-Ser (GRGDS) peptide-functionalized chitosan nanoparticles, with high affinity to bind with the GPIIa/IIIb receptor of activated platelets, were loaded with the drug etamsylate (etamsylate-loaded GRGDS peptide-functionalized chitosan nanoparticles; EGCSNP). Peptide conjugation was confirmed by LCMS, and the delivery system was characterized by DLS, SEM, XRD, and FTIR. In vitro study exhibited 90% drug release till 48 h fitting into the Weibull model. Plasma recalcification time and prothrombin time tests of GRGDS-functionalized nanoparticles proved that clot formation was 1.5 times faster than nonfunctionalized chitosan nanoparticles. The whole blood clotting time was increased by 2.5 times over clot formed under nonfunctionalized chitosan nanoparticles. Furthermore, the application of rheometric analysis revealed a 1.2 times stiffer clot over chitosan nanoparticles. In an in vivo liver laceration rabbit model, EGCSNP spatially localized at the internal injury site within 5 min of intravenous administration, and no rebleeding was recorded up to 3 h. The animals survived for 3 weeks after the injury, indicating the strong potential of the system for the management of noncompressible hemorrhage.


Sujet(s)
Coagulation sanguine , Chitosane , Modèles animaux de maladie humaine , Hémorragie , Nanoparticules , Animaux , Lapins , Nanoparticules/composition chimique , Chitosane/composition chimique , Hémorragie/traitement médicamenteux , Coagulation sanguine/effets des médicaments et des substances chimiques , Préparations à action retardée/pharmacocinétique , Préparations à action retardée/composition chimique , Mâle , Peptides/composition chimique , Peptides/pharmacologie , Peptides/usage thérapeutique
5.
Int J Legal Med ; 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902542

RÉSUMÉ

The significance of biomechanical analyses for forensic time since death estimations has recently been demonstrated. Previous biomechanical analyses successfully discriminated post-mortem brain tissue from tissue with a post-mortem interval of at least one day when held at 20 °C. However, the practical utility of such analyses beyond day one at 20 °C was limited. This study investigates the storage, loss, and complex shear modulus of various brain regions in sheep stored at 4 °C in 24-hour intervals over four days post-mortem using rheometry tests. The aim is to identify the critical biomechanical tissue property values to predict post-mortem time and assess the temperature sensitivity of the rheometry method by comparing results to recent findings at 20 °C. Thirty sheep brains were examined, including the frontal lobe, parietal lobe, anterior and posterior deep brain, superior colliculi, pons, medulla, and cerebellum. Rheometry tests were conducted, and receiver operator characteristic analyses were employed to establish cut-off values. At 4 °C storage, all investigated biomechanical properties of the examined brain regions remained stable for at least one day post-mortem. Using cerebellar samples stored at 4 °C, a post-mortem interval of at least two days could be determined with excellent diagnostic ability. Complex shear modulus values below 1435 Pa or storage modulus values below 1313 Pa allowed prediction of two or more days post-mortem. Comparisons between 4 °C and 20 °C revealed brain region-specific results. For instance, the complex shear moduli of the anterior deep brain at 4 °C were significantly higher on all individual testing days when compared to 20 °C. In contrast, the combined medulla and pons samples were similar on each day. Rheometry testing of brain tissue consistently stored at 4 °C since death proved valuable for forensic time since death estimations starting from two days after death.

6.
Bioengineering (Basel) ; 11(6)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38927825

RÉSUMÉ

Agarose gels are often used as a tissue mimic. The goal of this work was to determine the appropriate agarose concentrations that result in mechanical properties that match three different porcine organs. Strain tests were carried out with an amplitude varying from 0.01% to 10% at a frequency of 1 Hz on a range of agarose concentrations and porcine organs. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain amplitude of 0.1% for agarose and porcine organs. In agarose samples, the effect of pre-compression of the samples up to 10% axial strain was considered during frequency sweep tests. The experimental measurements from agarose samples were fit to a fractional order viscoelastic (springpot) model. The model was then used to predict stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data, and the results agreed within 12%. The agarose concentrations (by mass) that gave the best fit were 0.25% for the liver, 0.3% for the kidney, and 0.4% for the heart. At a frequency of 0.1 Hz and a shear strain of 0.1%, the agarose concentrations that best matched the shear storage modulus of the porcine organs were 0.4% agarose for the heart, 0.3% agarose for the kidney, and 0.25% agarose for the liver.

7.
Polymers (Basel) ; 16(10)2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38794539

RÉSUMÉ

The scope of this work is the development of a method to estimate the temperature and shear rate-dependent viscosity of mixtures composed of two polymers. The viscosity curve of polymer mixtures is crucial for the modeling and optimization of extrusion-based recycling, which is the most efficient way to recycle polymeric materials. The modeling and simulation of screw extruders requires detailed knowledge of the properties of the processed material, such as the thermodynamic properties, the density, and the rheological behavior. These properties are widely known for pure materials; however, the incorporation of impurities, like other polymers in recycled materials, alters the properties. In this work, miscible, immiscible, and compatibilized immiscible polymer mixtures are considered. A new method based on shear stress is proposed and compared to the shear rate-based method. Several mixing rules are evaluated for their accuracy in predicting mixture viscosity. The developed methods allow the prediction of the viscosity of a compatibilized immiscible mixture with deviations below 5% and that of miscible polymer mixtures with deviations below 3.5%.

8.
J Mech Behav Biomed Mater ; 154: 106522, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38537609

RÉSUMÉ

Physiologically modeled test samples with known properties and characteristics, or phantoms, are essential for developing sensitive, repeatable, and accurate quantitative MRI techniques. Magnetic resonance elastography (MRE) is one such technique used to estimate tissue mechanical properties, and it is advantageous to use phantoms with independently tunable mechanical properties to benchmark the accuracy of MRE methods. Phantoms with tunable shear stiffness are commonly used for MRE, but tuning the viscosity or damping ratio has proven to be difficult. A promising candidate for MRE phantoms with tunable damping ratio is polyacrylamide (PAA). While pure PAA has very low attenuation, viscoelastic hydrogels have been made by entrapping linear polyacrylamide strands (LPAA) within the PAA network. In this study, we evaluate the use of LPAA/PAA gels as physiologically accurate phantoms with tunable damping ratio, independent of shear stiffness, via MRE. Phantoms were made with 15.3 wt% PAA while the LPAA concentration ranged from 4.5 wt% to 8.0 wt%. MRE was performed at 9.4 T with 400 Hz vibration on all phantoms revealing a strong, positive correlation between damping ratio and LPAA content (p < 0.001). There was no significant correlation between shear stiffness and LPAA content, confirming a constant PAA concentration yielded constant shear stiffness. Rheometry at 10 Hz was performed to verify the damping ratio of the phantoms. Nearly identical slopes for damping ratio versus LPAA content were found from both MRE and rheometry (0.0073 and 0.0075 respectively). Ultimately, this study validates the adaptation of polyacrylamide gels into physiologically-relevant MRE phantoms to enable testing of MRE estimates of damping ratio.


Sujet(s)
Résines acryliques , Imagerie d'élasticité tissulaire , Imagerie d'élasticité tissulaire/méthodes , Imagerie par résonance magnétique , Fantômes en imagerie , Viscosité
9.
Int J Biol Macromol ; 257(Pt 1): 128543, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38061530

RÉSUMÉ

Gel networks formed from biopolymers have intrigued rheological interest, especially in the food industry. Despite ubiquitous non-network biopolymer aggregation in real gel food systems, its fundamental rheological implications remain less understood. This study addresses this by preparing pectin-gelatin composite gels with dispersed or aggregated biopolymers and comparatively analyzing viscoelastic responses using rheometry. Subtle discrepancies in non-network biopolymer states were revealed through oscillatory shearing at different frequencies and amplitudes. Biopolymer aggregation in the network notably influenced loss tangent frequency dependency, particularly at high frequencies, elevating I3/I1 values and sensitizing the yield point. Non-network biopolymers weakened Payne effects and gel non-linearity. A combination of strain stiffening and shear thinning nonlinear responses characterized prepared gel systems. Aggregation of pectin and gelatin enhanced shear thinning, while strain stiffening was notable in highly aggregated pectin cases. This study enhances understanding of the link between non-network structural complexity and viscoelastic properties in oscillatory rheometry of food gels.


Sujet(s)
Gélatine , Pectine , Pectine/composition chimique , Gélatine/composition chimique , Biopolymères/composition chimique , Gels/composition chimique , Aliments , Rhéologie
10.
ACS Nano ; 17(20): 20034-20042, 2023 10 24.
Article de Anglais | MEDLINE | ID: mdl-37791968

RÉSUMÉ

The viscoelasticity of the cytoplasm plays a critical role in cell morphology, cell division, and intracellular transport. Viscoelasticity is also interconnected with other biophysical properties, such as temperature, which is known to influence cellular bioenergetics. Probing the connections between intracellular temperature and cytoplasmic viscoelasticity provides an exciting opportunity for the study of biological phenomena, such as metabolism and disease progression. The small length scales and transient nature of changes in these parameters combined with their complex interdependencies pose a challenge for biosensing tools, which are often limited to a single readout modality. Here, we present a dual-mode quantum sensor capable of performing simultaneous nanoscale thermometry and rheometry in dynamic cellular environments. We use nitrogen-vacancy centers in diamond nanocrystals as biocompatible sensors for in vitro measurements. We combine subdiffraction resolution single-particle tracking in a fluidic environment with optically detected magnetic resonance spectroscopy to perform simultaneous sensing of viscoelasticity and temperature. We use our sensor to demonstrate probing of the temperature-dependent viscoelasticity in complex media at the nanoscale. We then investigate the interplay between intracellular forces and the cytoplasmic rheology in live cells. Finally, we identify different rheological regimes and reveal evidence of active trafficking and details of the nanoscale viscoelasticity of the cytoplasm.


Sujet(s)
Nanoparticules , Thermométrie , Diamant/composition chimique , Nanoparticules/composition chimique , Température , Thermométrie/méthodes , Spectroscopie par résonance magnétique
11.
Biomaterials ; 302: 122282, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37672999

RÉSUMÉ

Viscoelastic properties of hydrogels are important for their application in science and industry. However, rheological assessment of soft hydrogel biomaterials is challenging due to their complex, rapid, and often time-dependent behaviors. Resonant acoustic rheometry (RAR) is a newly developed technique capable of inducing and measuring resonant surface waves in samples in a non-contact fashion. By applying RAR at high temporal resolution during thrombin-induced fibrin gelation and ultraviolet-initiated polyethylene glycol (PEG) polymerization, we observed distinct changes in both frequency and amplitude of the resonant surface waves as the materials changed over time. RAR detected a series of capillary-elastic, capillary-viscous, and visco-elastic transitions that are uniquely manifested as crossover of different types of surface waves in the temporally evolving materials. These results reveal the dynamic interplay of surface tension, viscosity, and elasticity that is controlled by the kinetics of polymerization and crosslinking during hydrogel formation. RAR overcomes many limitations of conventional rheological approaches by offering a new way to comprehensively and longitudinally characterize soft materials during dynamic processes.


Sujet(s)
Acoustique , Matériaux biocompatibles , Viscosité , Élasticité , Hydrogels
12.
Polymers (Basel) ; 15(17)2023 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-37688163

RÉSUMÉ

The complex multiphase morphology of thermoplastic elastomers based on styrene-block copolymers (TPSs) affects their flow behavior significantly and in a way which may not be considered by commonly used characterization and evaluation procedures. To evaluate the relevance of non-Newtonian flow phenomena for the validity of rheometric data in processing, three commercially available TPSs with comparable hardness of about 60 Shore A but with different application fields were selected and characterized using parallel plate and high-pressure capillary rheometry. The validity of the rheometric data is assessed by modeling the flow in a high-pressure capillary rheometer by a computational fluid dynamics (CFD) simulation. The results were discussed in conjunction with close-up images of samples taken after the measurement. The materials show clearly different rheological behaviors but depend on the respective shear and geometrical conditions. In particular, for the material with the lowest viscosity, doubling the capillary diameter resulted in a disproportionate increase of the pressure loss by up to one third. Only the capillary flow of this material could not be reproduced by the CFD simulation. The results indicate that conventionally determined rheometric data of TPSs are of limited use in evaluating process flows for various material grades.

13.
Chemphyschem ; 24(24): e202300217, 2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-37691003

RÉSUMÉ

In this investigation the dynamics of two types of bitumens with different penetration grade were tested by using dynamic shear rheometry (DSR) and Nuclear Magnetic Resonance (NMR) at unaged conditions, and upon both short- and long-term artificial aging. The gel-sol transition temperature T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ was found to increase with increasing the time of aging treatment. Arrhenius parameters of the viscosity were found, unexpectedly, to be correlated with those of simple liquids, suggesting that the two kinds of systems, although chemically and physically quite different, share the same basic process at the molecular level. The molecular dynamics has been then investigated by NMR Pulsed Field Gradient Stimulated-Echo (PFGSE) and relaxometry (Carr-Purcell-Meiboom-Gill, CPMG, spin-echo pulse sequence) to capture the effect of aging upon dynamics variables such as self-diffusion coefficients D and transverse relaxation times T2 . The translational diffusion at T> T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ of the light molecular components of both types of bitumens was characterized by broad distributions of D which were found independent of the experimental time scale up to 0.2 s. Similarly, T2 data could be described as a continuous unimodal distributions of relaxation times determined both at T< T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ and T> T g e l → s o l * ${{T}_{gel\to sol}^{^{\ast}}}$ .

14.
Int J Legal Med ; 137(6): 1897-1906, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37582986

RÉSUMÉ

Time since death estimation is a vital part of forensic pathology. Despite the known tissue degradation after death, the efficacy of using biomechanical tissue properties to estimate time since death remains unexplored. Here, eight brain tissue localizations were sampled from the frontal lobe, parietal lobe, anterior and posterior deep brain, superior colliculi, pons, medulla, and cerebellum of 30 sheep; were then stored at 20 °C; and subsequently subjected to rheometry tests on days zero to four after death. Overall, the measured tissue storage modulus, loss modulus, and complex shear modulus decreased after death for all of the tested regions in a site-specific manner. Day zero to day one changes were the only 24-h interval, for which statistically significant differences in tissue mechanical moduli were observed for some of the tested brain regions. Based on receiver operator characteristic analyses between day zero and the pooled data of days one to four, a post mortem interval of at least 1 day can be determined with a sensitivity of 90%, a specificity of 92%, and a positive likelihood ratio of 10.8 using a complex shear modulus cut-off value of 1461 Pa for cerebellar samples. In summary, biomechanical properties of brain tissue can discriminate between fresh and at least 1-day-old samples stored at 20 °C with high diagnostic accuracy. This supports the possible value of biomechanical analyses for forensic time since death estimations. A striking advantage over established methods to estimate the time since death is its usability in cases of disintegrated bodies, e.g. when just the head is found.

15.
Res Sq ; 2023 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-37503114

RÉSUMÉ

Resonant Acoustic Rheometry (RAR), a newly developed ultrasound-based technique for non-contact characterization of soft viscoelastic materials, has shown promise for quantitative assessment of plasma coagulation by monitoring the entire dynamic process in real time. Here, we report the development of a multichannel RAR (mRAR) system for simultaneous monitoring of the coagulation of multiple small-volume plasma samples, a capability that is critical to efficiently provide improved assessment of coagulation. The mRAR system was constructed using an array of 4 custom-designed ultrasound transducers at 5.0 MHz and an electronic driving system that controlled the generation of synchronized ultrasound pulses for real time monitoring of multiple samples simultaneously. The mRAR system was tested using Coumadin-treated plasma samples with a range of International Normalized Ratio (INR) values, as well as normal pooled plasma samples. Tracking of dynamic changes in clotting of plasma samples triggered by either kaolin or tissue factor was performed for the entire duration of coagulation. The mRAR system captured distinct changes in the samples and identified parameters including clotting time, clotting speed, and the mechanical properties of the clots that were consistent with Coumadin dose and INR levels Data from this study demonstrate the feasibility of the mRAR system for the rapid, efficient, and accurate characterization of plasma coagulation.

16.
Clin Hemorheol Microcirc ; 84(4): 369-383, 2023.
Article de Anglais | MEDLINE | ID: mdl-37334582

RÉSUMÉ

BACKGROUND: Yielding and shear elasticity of blood are merely discussed within the context of hematocrit and erythrocyte aggregation. However, plasma might play a substantial role due its own viscoelasticity. OBJECTIVE: If only erythrocyte aggregation and hematocrit would determine yielding, blood of different species with comparable values would present comparable yield stresses. METHODS: rheometry (SAOS: amplitude and frequency sweep tests; flow curves) of hematocrit-matched samples at 37°C. Brillouin Light Scattering Spectroscopy at 38°C. RESULTS: Yield stress for pig: 20mPa, rat: 18mPa, and human blood: 9mPa. Cow and sheep blood were not in quasi-stationary state supporting the role of erythrocyte aggregation for the development of elasticity and yielding. However, pig and human erythrocytes feature similar aggregability, but yield stress of porcine blood was double. Murine and ruminant erythrocytes both rarely aggregate, but their blood behavior was fundamentally different. Pig plasma was shear-thinning and murine plasma was platelet-enriched, supporting the role of plasma for triggering collective effects and gel-like properties. CONCLUSIONS: Blood behavior near zero shear flow is not based solely on erythrocyte aggregation and hematocrit, but includes the hydrodynamic interaction with plasma. The shear stress required to break down elasticity is not the critical shear stress for dispersing erythrocyte aggregates, but the shear stress required to fracture the entire assembly of blood cells within their intimate embedding.


Sujet(s)
Viscosité sanguine , Agrégation érythrocytaire , Bovins , Femelle , Humains , Souris , Rats , Ovis , Animaux , Suidae , Hématocrite , Érythrocytes , Contrainte mécanique
17.
Polymers (Basel) ; 15(12)2023 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-37376235

RÉSUMÉ

Highly filled plastics may offer a suitable solution within the production process for bipolar plates. However, the compounding of conductive additives and the homogeneous mixing of the plastic melt, as well as the accurate prediction of the material behavior, pose a major challenge for polymer engineers. To support the engineering design process of compounding by twin-screw extruders, this present study offers a method to evaluate the achievable mixing quality based on numerical flow simulations. For this purpose, graphite compounds with a filling content of up to 87 wt.-% were successfully produced and characterized rheologically. Based on a particle tracking method, improved element configurations were found for twin-screw compounding. Furthermore, a method to characterize the wall slip ratios of the compounded material system with different filler content is presented, since highly filled material systems often tend to wall slip during processing, which could have a very large influence on accurate prediction. Numerical simulations of the high capillary rheometer were conducted to predict the pressure loss in the capillary. The simulation results show a good agreement and were experimentally validated. In contrast to the expectation, higher filler grades showed only a lower wall slip than compounds with a low graphite content. Despite occurring wall slip effects, the developed flow simulation for the design of slit dies can provide a good prediction for both low and high filling ratios of the graphite compounds.

18.
Macromol Biosci ; 23(11): e2300124, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37341885

RÉSUMÉ

Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive measures exist but are limited in applicability to soft materials. Photodynamic therapy (PDT) presents a means to perform safe and effective antimicrobial treatments in proximity to soft implants. HEMA-DMAEMA hydrogels are prepared with the photosensitizer methylene blue included at 10 and 100 µM in solution used for swelling over 2 or 4 days. Thirty minutes or 5 h of LED illumination at 9.20 m W c m 2 $9.20\frac{{mW}}{{c{m}^2}}$ is then used for PDT-induced generation of reactive oxygen species in direct contact with hydrogels to test viable limits of treatment. Frequency sweep rheological measurements reveal minimal overall changes in terms of loss modulus and loss factor but a statistically significant drop in storage modulus for some PDT doses, though within the range of controls and biological variation. These mild impacts suggest the feasibility of PDT application for infection clearing in proximity to soft implants. Future investigation with additional hydrogel varieties and current implant models will further detail the safety of PDT in implant applications.


Sujet(s)
Photothérapie dynamique , Photothérapie dynamique/méthodes , Hydrogels/pharmacologie , Photosensibilisants/pharmacologie , Photosensibilisants/usage thérapeutique , Méthacrylates , Bleu de méthylène/pharmacologie
19.
Methods Mol Biol ; 2644: 123-132, 2023.
Article de Anglais | MEDLINE | ID: mdl-37142919

RÉSUMÉ

The method of cell monolayer rheology enables quantifying average rheological properties of cell in a single experimental run of few millions cells together in a single layer. Here we describe step-by-step procedure as to how to employ a modified commercial rotational rheometer to run rheological measurement and detect average viscoelastic properties of cells while maintaining the necessary precision level at the same time.


Sujet(s)
Viscosité , Rhéologie/méthodes
20.
Molecules ; 28(9)2023 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-37175096

RÉSUMÉ

DNA is programmed to hierarchically self-assemble into superstructures spanning from nanometer to micrometer scales. Here, we demonstrate DNA nanosheets assembled out of a rationally designed flexible DNA unit (F-unit), whose shape resembles a Feynman diagram. F-units were designed to self-assemble in two dimensions and to display a high DNA density of hydrophobic moieties. oxDNA simulations confirmed the planarity of the F-unit. DNA nanosheets with a thickness of a single DNA duplex layer and with large coverage (at least 30 µm × 30 µm) were assembled from the liquid phase at the solid/liquid interface, as unambiguously evidenced by atomic force microscopy imaging. Interestingly, single-layer nanodiscs formed in solution at low DNA concentrations. DNA nanosheet superstructures were further assembled at liquid/liquid interfaces, as demonstrated by the fluorescence of a double-stranded DNA intercalator. Moreover, the interfacial mechanical properties of the nanosheet superstructures were measured as a response to temperature changes, demonstrating the control of interfacial shear mechanics based on DNA nanostructure engineering. The rational design of the F-unit, along with the presented results, provide an avenue toward the controlled assembly of reconfigurable/responsive nanosheets and membranes at liquid/liquid interfaces, to be potentially used in the characterization of biomechanical processes and materials transport.


Sujet(s)
Nanostructures , Nanotechnologie , Nanotechnologie/méthodes , Nanostructures/composition chimique , Microscopie à force atomique , Simulation numérique , ADN/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE