Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Water Sci Technol ; 89(9): 2209-2224, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38747945

RÉSUMÉ

The research presented in this paper is to determine the best tracer studies that will give acceptable estimates of longitudinal dispersion coefficient for Orashi river using rhodamine WT dye and sodium chloride as water tracer. Estimated results obtained for longitudinal dispersion coefficient for the case of rhodamine WT experiment ranges between 71 and 104.4 m2s-1 while that of sodium chloride experiment ranges between 20.1 and 34.71 m2s-1. These results revealed lower dispersion coefficient using sodium chloride as water tracer (WT) indicating that for larger rivers, sodium chloride should not be used as water tracer. The usage of sodium chloride as water tracer in the estimation of longitudinal dispersion coefficient is recommended in smaller streams as NaCl is relatively conservative. The established equations for both cases of investigation are proving satisfactory upon validation as degree of accuracy of 100.0% was obtained using discrepancy ratio (Dr). Standard error (SE), normal mean error (NME) and mean multiplication error (MME) of the developed equations is better when compared with other existing equations. However, Equation (17) is satisfactorily recommended.


Sujet(s)
Chlorure de sodium , Chlorure de sodium/composition chimique , Mouvements de l'eau , Rhodamines/composition chimique , Rivières/composition chimique , Polluants chimiques de l'eau/analyse
2.
Environ Monit Assess ; 196(5): 440, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38592560

RÉSUMÉ

The absence of a sewer system and inadequate wastewater treatment plants results in a discharge of untreated wastewater to the urban drainage channels and pollutes receiving waters. Field visits were carried out to observe water quality parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in an urban drainage system (Kolshet drain) in Thane City, Mumbai Metropolitan Region, India. Dye-tracing studies using rhodamine WT dye were used for computing the velocity, discharge, and dispersion coefficient of the drain. The data analysis shows that the BOD and COD values in the drain are higher than the permissible limits (30 mg L-1 for BOD and 250 mg L-1 for COD), which is not suitable for disposal to any receiving water body. Also, the DO was less than the permissible limit of a minimum of 3 mg L-1 (for the survival of aquatic life). It is seen that the higher BOD load significantly reduced the DO throughout the drain. The Water Quality Analysis Simulation Program (WASP 8.32, 2019) developed by the US Environmental Protection Agency (USEPA) has been used for the simulation of the DO and BOD in the drainage channel. The model simulates an appropriate estimate of the expected variation of DO and BOD at points of interest. The modeling for the Kolshet drain is expected to enable better estimates of the wastewater parameters and the pollution transport in the drain for planning purposes.


Sujet(s)
Eaux usées , Qualité de l'eau , États-Unis , Surveillance de l'environnement , Inde , Simulation numérique , Oxygène
3.
Methods Mol Biol ; 2722: 3-15, 2024.
Article de Anglais | MEDLINE | ID: mdl-37897596

RÉSUMÉ

Fluorescent dyes are often used to observe transport mechanisms in plant vascular tissues. However, it has been technically challenging to apply fluorescent dyes on roots to monitor xylem transport in vivo. Here, we present a fast, noninvasive, and high-throughput protocol to monitor xylem transport in seedlings. Using the fluorescent dyes 5(6)-carboxyfluorescein diacetate (CFDA) and Rhodamine WT, we were able to observe xylem transport on a cellular level in Arabidopsis thaliana roots. We describe how to apply these dyes on primary roots of young seedlings, how to monitor root-to-shoot xylem transport, and how to measure xylem transport velocity in roots. Moreover, we show that our protocol can also be applied to lateral roots and grafted seedlings to assess xylem (re)connection. Altogether, these techniques are useful for investigating xylem functionality in diverse experimental setups.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Plant , Colorants fluorescents , Xylème , Racines de plante
4.
Water Res ; 124: 556-565, 2017 11 01.
Article de Anglais | MEDLINE | ID: mdl-28810227

RÉSUMÉ

Norovirus (NoV) contamination of filter feeding bivalve shellfish is a well-recognised human health threat when shellfish are grown in sewage polluted waters. To date, the identification of high risk zones around sewage discharges in shellfish production areas (SPAs) has not been based on NoV data. This study utilised molecular methods for NoV analysis, combined with hydrographic studies, to determine the relationship between NoV concentrations in shellfish and sewage effluent dilution. Cages with mussels and oysters were placed at different distances downstream of sewage discharges in two coastal sites in England. The shellfish were tested for concentrations of NoV (genogroups I and II) and E. coli. Drogue tracking and dye tracing studies were conducted to quantify the dispersion and dilution of sewage effluent in the SPAs. Significant negative associations were found between both total concentrations of NoV (GI + GII) and E. coli and sewage effluent dilution in the SPAs. The total NoV concentrations predicted by the model at 300:1, 1000:1 and 5000:1 ratios of estuarine water to sewage effluent were 1200; 600; and 200 copies/g, respectively. The estimated area of NoV contamination varied according with local pollution source impacts and hydrographic characteristics. The results help to inform the derivation of sewage discharge buffer zones as a control measure for mitigating risk from human NoV contamination in SPAs.


Sujet(s)
Norovirus , Fruits de mer/virologie , Animaux , Angleterre , Escherichia coli , Humains , Ostreidae , Eaux d'égout
5.
Mar Pollut Bull ; 115(1-2): 164-171, 2017 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-27956013

RÉSUMÉ

Since 1925, dilution analysis has been used to minimize pathogenic impacts to bivalve molluscan shellfish growing areas from treated wastewater effluent in the National Shellfish Sanitation Program (NSSP). For over twenty five years, the U.S. Food and Drug Administration (FDA) has recommended a minimum of 1000:1 dilution of effluent within prohibited closure zones established around wastewater treatment plant (WWTP) discharges. During May 2010, using recent technologies, a hydrographic dye study was conducted in conjunction with a pathogen bioaccumulation study in shellfish adjacent to a WWTP discharge in Yarmouth, ME. For the first time an improved method of the super-position principle was used to determine the buildup of dye tagged sewage effluent and steady state dilution in tidal waters. Results of the improved method of dilution analysis illustrate an economical, reliable and more accurate and manageable approach for estimating the buildup and steady state pollutant conditions in coastal and estuarine waters.


Sujet(s)
Bivalvia , Surveillance de l'environnement , Eaux d'égout , Fruits de mer , Eaux usées , Animaux , Élimination des déchets liquides
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE