Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mar Drugs ; 16(10)2018 Oct 08.
Article de Anglais | MEDLINE | ID: mdl-30297643

RÉSUMÉ

Gram-negative bacteria utilize N-acylhomoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for intercellular communication. Cell-to-cell communication depends on cell population density, and AHL-dependent QS is related to the production of multiple genes including virulence factors. Quorum quenching (QQ), signal inactivation by enzymatic degradation, is a potential strategy for attenuating QS regulated bacterial infections. Both Gram-positive and -negative bacteria have QQ enzymes that can degrade AHLs. In our previous study, strain Ruegeria mobilis YJ3, isolated from healthy shrimp, showed strong AHLs degradative activity. In the current study, an AHL lactonase (designated RmmL) was cloned and characterized from Ruegeria mobilis YJ3. Amino acid sequence analysis showed that RmmL has a conserved "HXHXDH" motif and clusters together with lactonase AidC that belongs to the metallo-ß-lactamase superfamily. Recombinant RmmL could degrade either short- or long-chain AHLs in vitro. High-performance liquid chromatography analysis indicated that RmmL works as an AHL lactonase catalyzing AHL ring-opening by hydrolyzing lactones. Furthermore, RmmL can reduce the production of pyocyanin by Pseudomonas aeruginosa PAO1, while for the violacein and the extracellular protease activities by Chromobacterium violaceum CV026 and Vibrio anguillarum VIB72, no significant reduction was observed. This study suggests that RmmL might be used as a therapeutic agent in aquaculture.


Sujet(s)
Carboxylic ester hydrolases/génétique , Carboxylic ester hydrolases/métabolisme , Rhodobacteraceae/génétique , Rhodobacteraceae/métabolisme , Acyl-butyrolactones/métabolisme , Séquence d'acides aminés , Infections bactériennes/microbiologie , Chromobacterium/effets des médicaments et des substances chimiques , Lactones/métabolisme , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Détection du quorum/génétique , Vibrio/effets des médicaments et des substances chimiques , Facteurs de virulence/génétique , Facteurs de virulence/métabolisme , bêta-Lactamases/génétique , bêta-Lactamases/métabolisme
2.
Front Microbiol ; 9: 3304, 2018.
Article de Anglais | MEDLINE | ID: mdl-30687283

RÉSUMÉ

Quorum sensing (QS) promotes in situ extracellular enzyme (EE) activity via the exogenous signal N-acylhomoserine lactone (AHL), which facilitates marine particle degradation, but the species that engage in this regulatory mechanism remain unclear. Here, we obtained AHL-producing and AHL-degrading strains from marine particles. The strain Ruegeria mobilis Rm01 of the Roseobacter group (RBG), which was capable of both AHL producing and degrading, was chosen to represent these strains. We demonstrated that Rm01 possessed a complex QS network comprising AHL-based QS and quorum quenching (QQ) systems and autoinducer-2 (AI-2) perception system. Rm01 was able to respond to multiple exogenous QS signals through the QS network. By applying self-generated AHLs and non-self-generated AHLs and AI-2 QS signal molecules, we modulated biofilm formation and lipase production in Rm01, which reflected the coordination of bacterial metabolism with that of other species via eavesdropping on exogenous QS signals. These results suggest that R. mobilis might be one of the participators that could regulate EE activities by responding to QS signals in marine particles.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE