Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Vet Sci ; 11: 1330876, 2024.
Article de Anglais | MEDLINE | ID: mdl-38487709

RÉSUMÉ

The dietary rumen-degradable starch (RDS) to rumen-degradable protein (RDP) ratio, denoted as the RDS-to-RDP ratio (SPR), has been proven to enhance in vitro rumen fermentation. However, the effects of dietary SPR in vivo remain largely unexplored. This study was conducted to investigate the effect of dietary SPR on lactation performance, nutrient digestibility, rumen fermentation patterns, blood indicators, and nitrogen (N) partitioning in mid-lactating Holstein cows. Seventy-two Holstein dairy cows were randomly assigned to three groups (24 head/group), balanced for (mean ± standard deviation) days in milk (116 ± 21.5), parity (2.1 ± 0.8), milk production (42 ± 2.1 kg/d), and body weight (705 ± 52.5 kg). The cows were fed diets with low (2.1, control), medium (2.3), or high (2.5) SPR, formulated to be isoenergetic, isonitrogenous, and iso-starch. The study consisted of a one-week adaptation phase followed by an eight-week experimental period. The results indicated that the high SPR group had a lower dry matter intake compared to the other groups (p < 0.05). A quadratic increase in milk yield and feed efficiency was observed with increasing dietary SPR (p < 0.05), peaking in the medium SPR group. The medium SPR group exhibited a lower milk somatic cell count and a higher blood total antioxidant capacity compared to other groups (p < 0.05). With increasing dietary SPR, there was a quadratic improvement (p < 0.05) in the total tract apparent digestibility of crude protein, ether extract, starch, neutral detergent fiber, and acid detergent fiber. Although no treatment effect was observed in rumen pH, the rumen total volatile fatty acids concentration and microbial crude protein synthesis increased quadratically (p < 0.05) as dietary SPR increased. The molar proportion of propionate linearly increased (p = 0.01), while branched-chain volatile fatty acids linearly decreased (p = 0.01) with increasing dietary SPR. The low SPR group (control) exhibited higher concentration of milk urea N, rumen ammonia N, and blood urea N than other groups (p < 0.05). Despite a linear decrease (p < 0.05) in the proportion of urinary N to N intake, increasing dietary SPR led to a quadratic increase (p = 0.01) in N utilization efficiency and a quadratic decrease (p < 0.05) in the proportion of fecal N to N intake. In conclusion, optimizing dietary SPR has the potential to enhance lactation performance and N utilization efficiency. Based on our findings, a medium dietary SPR (with SPR = 2.3) is recommended for mid-lactating Holstein dairy cows. Nevertheless, further research on rumen microbial composition and metabolites is warranted to elucidate the underlying mechanisms of the observed effects.

2.
Anim Nutr ; 14: 121-129, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37808950

RÉSUMÉ

The objective of this study was to reveal the effect of rumen degradable starch (RDS) on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics. Eighteen Guanzhong dairy goats of a similar weight and production level (body weight = 45.8 ± 1.54 kg, milk yield = 1.75 ± 0.08 kg, and second parity) were randomly assigned to 3 treatment groups where they were fed a low RDS (LRDS, RDS = 20.52% DM) diet, medium RDS (MRDS, RDS = 22.15% DM) diet, or high RDS (HRDS, RDS = 24.88% DM) diet, respectively. The goats were fed with the experimental diets for 5 weeks. On the last day of the experiment, all goats were anesthetized, and peripheral blood and liver tissue samples were collected. The peripheral blood samples were used in metabolomic analysis and white blood cell (WBC) count, whereas the liver tissue samples were used in transcriptomic analysis. Based on the metabolomics results, the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet (P < 0.05). The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups (P < 0.01), indicating that there was inflammation in the HRDS group. Transcriptomic analysis showed that 4 genes related to bile acid secretion (genes: MDR1, RXRα, AE2, SULT2A1) were significantly downregulated in the HRDS group. In addition, genes related to the immune response were upregulated in the HRDS group, suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides (LPS) (gene: LBP), activated the Toll-like receptor 4 binding (genes: S100A8, S100A9) and the NF-kappa B signaling pathway (genes: LOC106503980, LOC108638497, CD40, LOC102180880, LOC102170970, LOC102175177, LBP, LOC102168903, LOC102185461, LY96 and CXCL8), triggered inflammation and complement responses (genes: C1QB, C1QC, and CFD). The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver. The changes of bile acids profile in blood and the down-regulation of 4 key genes (MDR1, RXRα, AE2, SULT2A1) involved in bile secretion in liver are probably related to liver inflammation.

3.
Anim Nutr ; 13: 1-8, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36873600

RÉSUMÉ

Since starch digestion in the small intestine provides more energy than digestion in the rumen of ruminants, reducing dietary rumen degradable starch (RDS) content is beneficial for improving energy utilization of starch in ruminants. The present study tested whether the reduction of rumen degradable starch by restricting dietary corn processing for growing goats could improve growth performance, and further investigated the possible underlying mechanism. In this study, twenty-four 12-wk-old goats were selected and randomly allocated to receive either a high RDS diet (HRDS, crushed corn-based concentrate, the mean of particle sizes of corn grain = 1.64 mm, n = 12) or a low RDS diet (LRDS, non-processed corn-based concentrate, the mean of particle sizes of corn grain >8 mm, n = 12). Growth performance, carcass traits, plasma biochemical indices, gene expression of glucose and amino acid transporters, and protein expression of the AMPK-mTOR pathway were measured. Compared to the HRDS, LRDS tended to increase the average daily gain (ADG, P = 0.054) and decreased the feed-to-gain ratio (F/G, P < 0.05). Furthermore, LRDS increased the net lean tissue rate (P < 0.01), protein content (P < 0.05) and total free amino acids (P < 0.05) in the biceps femoris (BF) muscle of goats. LRDS increased the glucose concentration (P < 0.01), but reduced total amino acid concentration (P < 0.05) and tended to reduce blood urea nitrogen (BUN) concentration (P = 0.062) in plasma of goats. The mRNA expression of insulin receptors (INSR), glucose transporter 4 (GLUT4), L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in BF muscle, and sodium-glucose cotransporters 1 (SGLT1) and glucose transporter 2 (GLUT2) in the small intestine were significantly increased (P < 0.05) in LRDS goats. LRDS also led to marked activation of p70-S6 kinase (S6K) (P < 0.05), but lower activation of AMP-activated protein kinase (AMPK) (P < 0.05) and eukaryotic initiation factor 2α (P < 0.01). Our findings suggested that reducing the content of dietary RDS enhanced postruminal starch digestion and increased plasma glucose, thereby improving amino acid utilization and promoting protein synthesis in the skeletal muscle of goats via the AMPK-mTOR pathway. These changes may contribute to improvement in growth performance and carcass traits in LRDS goats.

4.
Animals (Basel) ; 12(19)2022 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-36230374

RÉSUMÉ

The objective of this study was to investigate the effects of dietary rumen-degradable starch (RDS, g/kg of DM) to rumen-degradable protein (RDP, g/kg of DM) ratios (SPR) on in vitro rumen fermentation characteristics and microbial protein synthesis (MCPS). Treatments were eight diets with SPR of 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 and were formulated to be isoenergetic, isonitrogenous, and isostarch. Substrates were anaerobically incubated in sealed culture vials (100 mL) for 6, 24 or 48 h. Three incubation runs were conducted within two consecutive weeks. With the increase of the dietary SPR, the gas production (GP), in vitro dry matter disappearance (IVDMD) and concentration of MCPS and total volatile fatty acids (TVFA) linearly increased after 6 h of incubation (p ≤ 0.01), whereas they quadratically increased and peaked at the SPR of 2.3 after 24 and 48 h of incubation (p < 0.05). In response to dietary SPR increasing, the in vitro neutral detergent fiber disappearance (IVNDFD) quadratically increased (p < 0.01), and the ammonia nitrogen (NH3-N) concentration linearly decreased (p < 0.01) after 6, 24 and 48 h of incubation. Based on the presented results, an SPR of 2.3 is recommended for formulating a diet due to its greatest IVDMD, IVNDFD, GP, TVFA and MCPS. However, as the results obtained are strictly dependent on the in vitro conditions, further in vivo studies are needed to verify our findings.

5.
Front Microbiol ; 12: 651631, 2021.
Article de Anglais | MEDLINE | ID: mdl-34163442

RÉSUMÉ

High starch diets have been proven to increase the risk of hindgut acidosis in high-yielding dairy animals. As an effective measurement of dietary carbohydrate for ruminants, studies on rumen degradable starch (RDS) and the effects on the gut microbiota diversity of carbohydrate-active enzymes (CAZymes), and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology functional categories are helpful to understand the mechanisms between gut microbiota and carbohydrate metabolism in dairy goats. A total of 18 lactating goats (45.8 ± 1.54 kg) were randomly divided equally into three dietary treatments with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) on a DM basis for 5 weeks. Compared with the LRDS and MRDS groups, HRDS increased acetate molar proportion in the cecum. For the HRDS group, the abundance of family Ruminococcaceae and genus Ruminococcaceae UCG-010 were significantly increased in the cecum. For the LRDS group, the butyrate molar proportion and the abundance of butyrate producer family Bacteroidale_S24-7, family Lachnospiraceae, and genus Bacteroidale_S24-7_group were significantly increased in the cecum. Based on the BugBase phenotypic prediction, the microbial oxidative stress tolerant and decreased potentially pathogenic in the LRDS group were increased in the cecum compared with the HRDS group. A metagenomic study on cecal bacteria revealed that dietary RDS level could affect carbohydrate metabolism by increasing the glycoside hydrolase 95 (GH95) family and cellulase enzyme (EC 3.2.1.4) in the HRDS group; increasing the GH13_20 family and isoamylase enzyme (EC 3.2.1.68) in the LRDS group. PROBIO probiotics database showed the relative gene abundance of cecal probiotics significantly decreased in the HRDS group. Furthermore, goats fed the HRDS diet had a lower protein expression of Muc2, and greater expression RNA of interleukin-1ß and secretory immunoglobulin A in cecal mucosa than did goats fed the LRDS diet. Combined with the information from previous results from rumen, dietary RDS level altered the degradation position of carbohydrates in the gastrointestinal (GI) tract and increased the relative abundance of gene encoded enzymes degrading cellulose in the HRDS group in the cecum of dairy goats. This study revealed that the HRDS diet could bring disturbances to the microbial communities network containing taxa of the Lachnospiraceae and Ruminococcaceae and damage the mucus layer and inflammation in the cecum of dairy goats.

6.
J Nutr ; 150(10): 2755-2763, 2020 10 12.
Article de Anglais | MEDLINE | ID: mdl-32856057

RÉSUMÉ

BACKGROUND: High rumen-degradable starch (RDS) diets decrease milk fat. The increase of LPS in plasma associated with increased RDS impairs liver function, immune response and lipid metabolism, which depress the precursors for milk fat. OBJECTIVE: This study investigated the mechanism of depression of milk fat precursors in the liver and small intestine of dairy goats fed different RDS diets. METHOD: Eighteen Guanzhong lactating goats (second lactation, 45.8 ± 1.54 kg) and 6 ruminally cannulated dairy goats (aged 2-3 y, 54.0 ± 2.40 kg) were fed 3 different diets with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) for 36 and 21 d, respectively, in experiments 1 and 2. The liver metabolites and jejunal microbiota in experiment 1 and LPS concentrations in rumen fluid and plasma in experiment 2 were measured. One-way ANOVA was used to analyze the biochemical parameters and mRNA or protein expression. The MIXED procedure was used to analyze LPS concentrations. RESULTS: In experiment 1, the HRDS diet showed increased activity of alkaline phosphatase (27.4 to 41.4 U/L) in plasma (P < 0.05) compared with LRDS treatment. The HRDS diet significantly increased the hepatic concentrations of l-carnitine (129%), l-palmitoylcarnitine (306%), taurochenodeoxycholate (856%), and taurodeoxycholic acid (588%) in liver (variable importance in the projection > 1, P < 0.10) compared with the LRDS treatment. Goats fed the HRDS diet had 33.6% greater liver protein expression of carnitine palmitoyltransferase-1 (P < 0.05), and greater relative abundance of Firmicutes and Ruminococcus 2 in the jejunal content (linear discriminant analysis > 2.0, P < 0.05) than did goats fed LRDS diet. In experiment 2, goats fed the HRDS diet had greater LPS concentrations in rumen fluid (7.57 to 13.6 kEU/mL) and plasma (0.037 to 0.179 EU/mL) (P < 0.05) than did goats fed LRDS diet. CONCLUSIONS: Feeding the HRDS diet promoted hepatic lipid ß-oxidation and disrupted phospholipid and bile acids metabolisms in liver, thereby reducing the supply of lipogenic precursors to the mammary gland in dairy goats.


Sujet(s)
Acides et sels biliaires/métabolisme , Hydrates de carbone alimentaires/pharmacologie , Capra/physiologie , Foie/métabolisme , Rumen/métabolisme , Amidon/pharmacologie , Animaux , Hydrates de carbone alimentaires/administration et posologie , Femelle , Lactation , Métabolisme lipidique , Amidon/administration et posologie , Amidon/métabolisme
7.
Front Microbiol ; 11: 1003, 2020.
Article de Anglais | MEDLINE | ID: mdl-32508797

RÉSUMÉ

The objective of this study was to investigate the effects of different dietary rumen degradable starch (RDS) on the diversity of carbohydrate-active enzymes (CAZymes) and Kyoto Encyclopedia of Genes and Genomes Orthology functional categories to explore carbohydrate degradation in dairy goats. Eighteen dairy goats (second lactation, 45.8 ± 1.54 kg) were divided in three groups fed low RDS (LRDS), medium RDS (MRDS), and high RDS (HRDS) diets. The results showed that, HRDS treatment group significantly decreased the ruminal pH (P < 0.05), and increased the propionate proportion (P < 0.05), fumarate and succinate concentrations (P < 0.05), trended to increase lactate concentration (P = 0.50) compared with LRDS group. The relative abundance of acetogens, such as family Clostridiaceae and Ruminococcaceae, genera Clostridium and Blautia were higher in HRDS than LRDS feeding goats. The GH9 family (responsible for cellulose degradation) genes were lower in HRDS than MRDS diet samples, and mainly produced by Prevotellaceae, Ruminococcaceae, and Bacteroidaceae. Amylose (EC3.2.1.3) genes under HRDS treatment were more abundant than under LRDS treatment. However, the abundance of GH13_9 and CBM48 (responsible for starch degradation) were reduced in HRDS group indicating the decreased binding activity from catalytic modules to starch. This study revealed that HRDS-fed dairy goats had decreased CAZymes, which encode enzymes degrade cellulose and starch in the dairy goats.

8.
J Anim Sci Biotechnol ; 11: 30, 2020.
Article de Anglais | MEDLINE | ID: mdl-32280461

RÉSUMÉ

BACKGROUND: Starch is an important substance that supplies energy to ruminants. To provide sufficient energy for high-yielding dairy ruminants, they are typically fed starch-enriched diets. However, starch-enriched diets have been proven to increase the risk of milk fat depression (MFD) in dairy cows. The starch present in ruminant diets could be divided into rumen-degradable starch (RDS) and rumen escaped starch (RES) according to their different degradation sites (rumen or intestine). Goats and cows have different sensitivities to MFD. Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited. RESULTS: Eighteen Guanzhong dairy goats (day in milk = 185 ± 12 d) with similar parity, weight, and milk yield were selected and randomly assigned to one of three groups (n = 6), which were fed an LRDS diet (Low RDS = 20.52%), MRDS diet (Medium RDS = 22.15%), or HRDS diet (High RDS = 24.88%) for 5 weeks. Compared with that of the LRDS group, the milk fat contents in the MRDS and HRDS groups significantly decreased. The yields of short-, medium- and long-chain fatty acids decreased in the HRDS group. Furthermore, increased RDS significantly decreased ruminal B. fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10, cis-12 conjugated linoleic acid (CLA) and trans-10 C18:1 contents in the rumen fluid.A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2, MVD, AGPS, SCD5, FADS2, CERCAM, SC5D, HSD17B7, HSD17B12, ATM, TP53RK, GDF1 and LOC102177400. Remarkably, the significant decrease of INSIG1, whose expression was depressed by trans-10, cis-12 CLA, could reduce the activity of SREBP and, consequently, downregulate the downstream gene expression of SREBF1. CONCLUSIONS: HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis, particularly, INSIG1. Specifically, even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet, the low and medium RDS diets did not cause MFD in lactating goats.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE