Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 728
Filtrer
1.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39095190

RÉSUMÉ

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Sujet(s)
Graphite , Oxydoréduction , Platine , Dioxyde de soufre , Titane , Titane/composition chimique , Graphite/composition chimique , Dioxyde de soufre/composition chimique , Platine/composition chimique , Catalyse , Monoxyde de carbone/composition chimique , Eau/composition chimique , Polluants atmosphériques/composition chimique , Modèles chimiques
2.
Small ; : e2404548, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39092680

RÉSUMÉ

Herein, a variety of 2,6-diaminopyridine (DAP) derived nitrogen-doped hierarchically porous carbon (DAP-NHPC-T) prepared from carbonization-induced structure transformation of DAP-Zn-SiO2-P123 nanocomposites are reported, which are facilely prepared from solvent-free co-assembly of block copolymer templates P123 with pyridine-rich monomer of DAP, Zn(NO3)2 and tetramethoxysilane. In the pyrolysis process, P123 and SiO2 templates promote the formation of mesoporous and supermicroporous structures in the DAP-NHPC-T, while high-temperature volatilization of Zn contributed to generation of micropores. The DAP-NHPC-T possess large BET surface areas (≈956-1126 m2 g-1), hierarchical porosity with micro-supermicro-mesoporous feature and high nitrogen contents (≈10.44-5.99 at%) with tunable density of pyridine-based nitrogen sites (≈5.99-3.32 at%), exhibiting good accessibility and reinforced interaction with SO2. Consequently, the DAP-NHPC-T show high SO2 capacity (14.7 mmol g-1, 25 °C and 1.0 bar) and SO2/CO2/N2 IAST selectivities, extraordinary dynamic breakthrough separation efficiency and cycling stability, far beyond any other reported nitrogen-doped metal-free carbon. As verified by in situ spectroscopy and theoretical calculations, the pyridine-based nitrogen sites of the DAP-NHPC-T boost SO2 adsorption via the unique charge transfer, the adsorption mechanism and reaction model have been finally clarified.

3.
Article de Anglais | MEDLINE | ID: mdl-39086140

RÉSUMÉ

The emissions of sulfur dioxide (SO2) from combustion exhaust gases pose significant risks to public health and the environment due to their harmful effects. Therefore, the development of highly efficient adsorbent polymers capable of capturing SO2 with high capacity and selectivity has emerged as a critical challenge in recent years. However, existing polymers often exhibit poor SO2/CO2 and SO2/N2 selectivity. Herein, we report two triazine-functionalized triphenylamine-based nanoporous organic polymers (ANOP-6 and ANOP-7) that demonstrate both good SO2 uptake and high SO2/CO2 and SO2/N2 selectivity. These polymers were synthesized through cost-effective Friedel-Crafts reactions using cyanuric chloride, 3,6-diphenylaminecarbazole, and 2,2',7,7'-tetrakis(diphenylamino)-9,9'-spirobifluorene. The resultant ANOPs are composed of triazine and triphenylamine units and feature an ultramicroporous structure. Remarkably, ANOPs exhibit impressive adsorption capacities for SO2, with uptakes of approximately 3.31-3.72 mmol·g-1 at 0.1 bar, increasing to 9.52-9.94 mmol·g-1 at 1 bar. The static adsorption isotherms effectively illustrate the ability of ANOPs to separate SO2 from SO2/CO2 and SO2/N2 mixtures. At 298 K and 1 bar, ANOP-6 shows outstanding selectivity toward SO2/CO2 (248) and SO2/N2 (13146), surpassing all previously reported triazine-based nanoporous organic polymers. Additionally, dynamic breakthrough tests demonstrate the superior separation properties of ANOPs for SO2 from an SO2/CO2/N2 mixture. ANOPs exhibit a breakthrough time of 73.1 min·g-1 and a saturated SO2 capacity of 0.53 mmol·g-1. These results highlight the exceptional adsorption properties of ANOPs for SO2, indicating their promising potential for the highly efficient capture of SO2 from flue gas.

4.
J Hazard Mater ; 477: 135268, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39047562

RÉSUMÉ

Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NOx emissions from mobile sources, the challenges of high light-off temperature, SO2 tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnOx supported Mesoporous-silica (Meso-SiO2) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO2 tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnOx species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO2, which allows the NH3-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnOx species can react preferentially with SO2 as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO2 shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH3-SCR catalysts.

5.
ACS Appl Mater Interfaces ; 16(28): 37298-37307, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38970147

RÉSUMÉ

Interfacial electric field holds significant importance in determining both the polar molecular configuration and surface coverage during electrocatalysis. This study introduces a methodology leveraging the varying electric dipole moment of SO2 under distinct interfacial electric field strengths to enhance the selectivity of the SO2 electroreduction process. This approach presented the first attempt to utilize pulsed voltage application to the Au/PTFE membrane electrode for the control of the molecular configuration and coverage of SO2 on the electrode surface. Remarkably, the modulation of pulse duration resulted in a substantial inhibition of the hydrogen evolution reaction (HER) (FEH2 < 3%) under millisecond pulse conditions (ta = 10 ms, tc = 300 ms, Ea = -0.8 V (vs Hg/Hg2SO4), Ec = -1.8 V (vs Hg/Hg2SO4)), concomitant with a noteworthy enhancement in H2S selectivity (FEH2S > 97%). A comprehensive analysis, incorporating in situ Raman spectroscopy, electrochemical quartz crystal microbalance, COMSOL simulations, and DFT calculations, corroborated the increased selectivity of H2S products was primarily associated with the inherently large dipole moment of the SO2 molecule. The enhancement of the interfacial electric field induced by millisecond pulses was instrumental in amplifying SO2 coverage, activating SO2, facilitating the formation of the pivotal intermediate product *SOH, and effectively reducing the reaction energy barrier in the SO2 reduction process. These findings provide novel insights into the influences of ion and molecular transport dynamics, as well as the temporal intricacies of competitive pathways during the SO2 electroreduction process. Moreover, it underscores the intrinsic correlation between the electric dipole moment and surface-molecule interaction of the catalyst.

6.
Chem Asian J ; : e202400716, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39041455

RÉSUMÉ

Excessive sulfur dioxide (SO2) disturbs physiology of lysosomes causing diseases and threatening human health. A fluorescent probe has been regarded as one of the most attractive approaches, which is compatible with living cells and possesses high sensitivity. However, most of fluorescent probes' reaction sites are activated before they reach the destination. In this work, an acid-activatable fluorescent probe PT1 was synthesized, characterized, and used for SO2 detection. The introduction of oxazolines in PT1 enables the intelligent response of probe to release the activation stie for SO2 derivatives through Michael addition upon exposure to acid. In vitro studies showed a remarkable selectivity of PT1 to SO2 derivatives than other biothiols with a limit of detection as low as 62 nM. Precise spatiotemporal identification of lysosomal SO2 fluctuations has been successfully performed by PT1. Furthermore, PT1 can be applied for monitoring SO2 derivatives in traditional Chinese medicines.

7.
Sci Rep ; 14(1): 15503, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38969703

RÉSUMÉ

In this study, we have examined the air quality within a revitalized, post-industrial urban area in Lódz, Poland. The use of Dron technology with mobile measurement equipment allowed for accurate assessment of air quality (particulate matter and gaseous pollutants) and factors influencing air quality (wind speed and direction) on a local scale in an area of 0.18 km2 and altitudes from 2 to 50 m. The results show that the revitalization carried out in the Lodz special economic zone area contributed to eliminate internal air pollution emitters through the use of ecological and effective heat sources. The exceedances permissible concentration values were local, and concerned mainly the higher measurement zones of the troposphere (more than 30 m above ground level). In the case of gaseous pollutants, higher wind speeds were associated with a decrease in the concentration of SO2 and an increase in H2S concentration. In both cases, the wind contributed to the occurrence of local areas of accumulation of these gaseous pollutants in the spaces between buildings or wooded areas.

8.
J Mol Model ; 30(8): 241, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954102

RÉSUMÉ

CONTEXT: In silico study investigates the activation of sulfur dioxide by newly designed frustrated Lewis pairs, i.e., [P(tBu)3…B(C2NBSHF2)3], where the Lewis acid part is a super Lewis acid. The activation process involves the making of P-S and B-O bonds, leading to the formation of an FLP-SO2 adduct. The calculated results demonstrate that the activation of SO2 by the FLP is almost barrierless and exothermic. Exploration of the impact of the solvent environment on the feasibility and energetics of the reaction has been investigated. The exothermicity is increasing in nonpolar solvents. METHODS: This study focuses on understanding the electronic activity of SO2 activation by FLP with the help of the Minnesota 06 functional, M06-2X (global hybrid functional with 54% HF exchange) along with Pople's basis set, 6-311G (d, p). Principal interacting orbital and extended transition state-natural orbitals for chemical valence studies, giving impactful insight into the favorable orbital interaction and electron transfer in this reaction. Furthermore, useful CDFT descriptors such as reaction force constant and reaction electronic flux profiles along the intrinsic reaction coordinate give insights into the synchronicity and total electronic activity of the reaction.

9.
Mar Pollut Bull ; 206: 116761, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39083913

RÉSUMÉ

Shipping emissions were measured in Dunkirk, France. Elevated aerosol extinction coefficients (AEC), nitrogen dioxide (NO2) and sulphur dioxide (SO2) were observed up to 500 m from surface. Formaldehyde (HCHO) did not show an increase every time, which suggests that oxidation of emitted volatile organic compounds (VOCs) took longer than the transport to the observation path and dilution of direct emissions had occurred. Background NO2, HCHO, and SO2 levels were higher when the wind came over land or the surrounding industrial area, indicating that land-based sources contribute significantly; however, clear spikes in NO2 and SO2 were observed whenever ship plumes were sampled. Observations show that the ship emission contribution to pollution is significant, but land-based sources still dominate. The SO2/NO2 ratio was low throughout the campaign, although varying according to the ship type, confirming that the new fuel content regulations are being followed by most ships in this region.

10.
J Photochem Photobiol B ; 258: 112986, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39084140

RÉSUMÉ

Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.

11.
J Mol Model ; 30(8): 291, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39073631

RÉSUMÉ

CONTEXT: Amino acids are a highly effective and environmentally friendly adsorbent for SO2. However, there has been no comprehensive study of the binding modes between amino acids and SO2 at the molecular level. In this paper, the binding modes of three amino acids (Asp, Lys, and Val) with SO2 are studied comprehensively and in detail using quantum chemical calculations. The results indicate that each amino acid has multiple binding modes: 22 for Asp, 49 for Lys, and 10 for Val. Both the amino and carboxyl groups in amino acids, as well as those in side chains, can serve as binding sites for chalcogen bonds. The binding energies range from - 6.42 to - 1.06 kcal/mol for Asp, - 12.43 to - 1.63 kcal/mol for Lys, and - 7.42 to - 0.60 kcal/mol for Val. Chalcogen and hydrogen bonds play a crucial role in the stronger binding modes. The chalcogen bond is the strongest when interacting with an amino group, with an adiabatic force constant of 0.475 mDyn/Å. Energy decomposition analysis indicates that the interaction is primarily electrostatic attraction, with the orbital and dispersive interactions dependent on the binding mode. METHODS: Amino acids and complexes of amino acids with SO2 were used to do semi-empirical MD using Molclus combined with xtb at the GFN2 level. Optimization and frequency calculations of the structures were conducted using density-functional theory (DFT) B3LYP/6-311G* (with DFT-D3 correction). Single-point energy calculations were performed for all structures using DLPNO-CCSD(T)/aug-cc-pVTZ with tightPNO. Further analysis of the structures was conducted using ESP, AIM, IGMH, and sob-EDA to gain a deeper understanding of the interactions between amino acids and SO2.


Sujet(s)
Acides aminés , Liaison hydrogène , Dioxyde de soufre , Dioxyde de soufre/composition chimique , Acides aminés/composition chimique , Électricité statique , Thermodynamique , Sites de fixation , Simulation de dynamique moléculaire , Modèles moléculaires
12.
Healthcare (Basel) ; 12(12)2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38921290

RÉSUMÉ

Current evidence suggests that airborne pollutants have a detrimental effect on fetal growth through the emergence of small for gestational age (SGA) or term low birth weight (TLBW). The study's objective was to critically evaluate the available literature on the association between environmental pollution and the incidence of SGA or TLBW occurrence. A comprehensive literature search was conducted across Pubmed/MEDLINE, Web of Science, Cochrane Library, EMBASE, and Google Scholar using predefined inclusion and exclusion criteria. The methodology adhered to the PRISMA guidelines. The systematic review protocol was registered in PROSPERO with ID number: CRD42022329624. As a result, 69 selected papers described the influence of environmental pollutants on SGA and TLBW occurrence with an Odds Ratios (ORs) of 1.138 for particulate matter ≤ 10 µm (PM10), 1.338 for particulate matter ≤ 2.5 µm (PM2.5), 1.173 for ozone (O3), 1.287 for sulfur dioxide (SO2), and 1.226 for carbon monoxide (CO). All eight studies analyzed validated that exposure to volatile organic compounds (VOCs) is a risk factor for SGA or TLBW. Pregnant women in the high-risk group of SGA occurrence, i.e., those living in urban areas or close to sources of pollution, are at an increased risk of complications. Understanding the exact exposure time of pregnant women could help improve prenatal care and timely intervention for fetuses with SGA. Nevertheless, the pervasive air pollution underscored in our findings suggests a pressing need for adaptive measures in everyday life to mitigate worldwide environmental pollution.

13.
Environ Sci Technol ; 58(27): 12272-12280, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38934332

RÉSUMÉ

Environmentally benign cerium-based catalysts are promising alternatives to toxic vanadium-based catalysts for controlling NOx emissions via selective catalytic reduction (SCR), but conventional cerium-based catalysts unavoidably suffer from SO2 poisoning in low-temperature SCR. We develop a strongly sulfur-resistant Ce1+1/TiO2 catalyst by spatially confining Ce atom pairs to different anchoring sites of anatase TiO2(001) surfaces. Experimental results combined with theoretical calculations demonstrate that strong electronic interactions between the paired Ce atoms upshift the lowest unoccupied states to an energy level higher than the highest occupied molecular orbital (HOMO) of SO2 so as to be catalytically inert in SO2 oxidation but slightly lower than HOMO of NH3 so that Ce1+1/TiO2 has desired ability toward NH3 activation required for SCR. Hence, Ce1+1/TiO2 shows higher SCR activity and excellent stability in the presence of SO2 at low temperatures with respect to supported single Ce atoms. This work provides a general strategy to develop sulfur-resistant catalysts by tuning the electronic states of active sites for low-temperature SCR, which has implications for practical applications with energy-saving requirements.


Sujet(s)
Cérium , Soufre , Cérium/composition chimique , Soufre/composition chimique , Catalyse , Oxydoréduction , Température
14.
Environ Monit Assess ; 196(7): 659, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38916809

RÉSUMÉ

First-ever measurements of particulate matter (PM2.5, PM10, and TSP) along with gaseous pollutants (CO, NO2, and SO2) were performed from June 2019 to April 2020 in Faisalabad, Metropolitan, Pakistan, to assess their seasonal variations; Summer 2019, Autumn 2019, Winter 2019-2020, and Spring 2020. Pollutant measurements were carried out at 30 locations with a 3-km grid distance from the Sitara Chemical Industry in District Faisalabad to Bhianwala, Sargodha Road, Tehsil Lalian, District Chiniot. ArcGIS 10.8 was used to interpolate pollutant concentrations using the inverse distance weightage method. PM2.5, PM10, and TSP concentrations were highest in summer, and lowest in autumn or winter. CO, NO2, and SO2 concentrations were highest in summer or spring and lowest in winter. Seasonal average NO2 and SO2 concentrations exceeded WHO annual air quality guide values. For all 4 seasons, some sites had better air quality than others. Even in these cleaner sites air quality index (AQI) was unhealthy for sensitive groups and the less good sites showed Very critical AQI (> 500). Dust-bound carbon and sulfur contents were higher in spring (64 mg g-1) and summer (1.17 mg g-1) and lower in autumn (55 mg g-1) and winter (1.08 mg g-1). Venous blood analysis of 20 individuals showed cadmium and lead concentrations higher than WHO permissible limits. Those individuals exposed to direct roadside pollution for longer periods because of their occupation tended to show higher Pb and Cd blood concentrations. It is concluded that air quality along the roadside is extremely poor and potentially damaging to the health of exposed workers.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Surveillance de l'environnement , Matière particulaire , Pakistan , Humains , Polluants atmosphériques/analyse , Matière particulaire/analyse , Pollution de l'air/statistiques et données numériques , Saisons , Organisation mondiale de la santé , Dioxyde de soufre/analyse , Villes , Dioxyde d'azote/analyse , Exposition environnementale/statistiques et données numériques , Monoxyde de carbone/analyse
15.
Environ Sci Technol ; 58(26): 11812-11821, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38897924

RÉSUMÉ

We developed a simple strategy for preparing IrSn bimetallic clusters encapsulated in pure silicon zeolites via a one-pot hydrothermal synthesis by using diethylamine as a stabilizing agent. A series of investigations verified that metal species have been confined successfully in the inner of MFI zeolites. IrSn bimetallic cluster catalysts were efficient for the CO selective catalytic reduction of NOx in the presence of excess O2. Furthermore, the 13CO temperature-programmed surface reaction results demonstrated that NO2 and N2O could form when most of the CO was transformed into CO2 and that Sn modification could passivate CO oxidation on the IrSn bimetallic clusters, leading to more reductants that could be used for NOx reduction at high temperatures. Furthermore, SO2 can also influence the NOx conversion by inhibiting the oxidation of CO. This study provides a new strategy for preparing efficient environmental catalysts with a high dispersion of metal species.


Sujet(s)
Oxydoréduction , Oxygène , Zéolites , Zéolites/composition chimique , Catalyse , Oxygène/composition chimique , Monoxyde de carbone/composition chimique , Étain/composition chimique , Oxydes d'azote/composition chimique
16.
Molecules ; 29(12)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38930914

RÉSUMÉ

This study introduces a novel trifluoromethylating reagent, [(bpy)Cu(O2CCF2SO2F)2], notable for not only its practical synthesis from cost-effective starting materials and scalability but also its nonhygroscopic nature. The reagent demonstrates high efficiency in facilitating trifluoromethylation reactions with various halogenated hydrocarbons, yielding products in good yields and exhibiting broad functional group compatibility. The development of [(bpy)Cu(O2CCF2SO2F)2] represents an advancement in the field of organic synthesis, potentially serving as a valuable addition to the arsenal of existing trifluoromethylating agents.

17.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R79-R87, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38766774

RÉSUMÉ

Sulfur dioxide (SO2), a common environmental and industrial air pollutant, possesses a potent effect in eliciting cough reflex, but the primary type of airway sensory receptors involved in its tussive action has not been clearly identified. This study was carried out to determine the relative roles of three major types of vagal bronchopulmonary afferents [slowly adapting receptors (SARs), rapidly adapting receptors (RARs), and C-fibers] in regulating the cough response to inhaled SO2. Our results showed that inhalation of SO2 (300 or 600 ppm for 8 min) evoked an abrupt and intense stimulatory effect on bronchopulmonary C-fibers, which continued for the entire duration of inhalation challenge and returned toward the baseline in 1-2 min after resuming room air-breathing in anesthetized and mechanically ventilated mice. In stark contrast, the same SO2 inhalation challenge generated a distinct and consistent inhibitory effect on both SARs and phasic RARs; their phasic discharges synchronized with respiratory cycles during the baseline (breathing room air) began to decline progressively within 1-3 min after the onset of SO2 inhalation, ceased completely before termination of the 8-min inhalation challenge, and then slowly returned toward the baseline after >40 min. In a parallel study in awake mice, inhalation of SO2 at the same concentration and duration as that in the nerve recording experiments evoked cough responses in a pattern and time course similar to that observed in the C-fiber responses. Based on these results, we concluded that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough response to inhaled SO2.NEW & NOTEWORTHY This study demonstrated that inhalation of a high concentration of sulfur dioxide, an irritant gas and common air pollutant, completely and reversibly inhibited the neural activities of both slowly adapting receptor and rapidly adapting receptor, two major types of mechanoreceptors in the lungs with their activities conducted by myelinated fibers. Furthermore, the results of this study suggested that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough reflex responses to inhaled sulfur dioxide.


Sujet(s)
Toux , Neurofibres non-myélinisées , Dioxyde de soufre , Nerf vague , Animaux , Dioxyde de soufre/administration et posologie , Toux/physiopathologie , Toux/induit chimiquement , Nerf vague/effets des médicaments et des substances chimiques , Nerf vague/physiologie , Souris , Mâle , Neurofibres non-myélinisées/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Réflexe/effets des médicaments et des substances chimiques , Administration par inhalation , Bronches/innervation , Bronches/effets des médicaments et des substances chimiques , Poumon/innervation , Poumon/effets des médicaments et des substances chimiques , Neurones afférents/effets des médicaments et des substances chimiques
18.
Environ Sci Technol ; 58(23): 10175-10184, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38771930

RÉSUMÉ

The interplay between sulfur and iron holds significant importance in their atmospheric cycle, yet a complete understanding of their coupling mechanism remains elusive. This investigation delves comprehensively into the evolution of reactive oxygen species (ROS) during the interfacial reactions involving sulfur dioxide (SO2) and iron oxides under varying relative humidity conditions. Notably, the direct activation of water by iron oxide was observed to generate a surface hydroxyl radical (•OH). In comparison, the aging of SO2 was found to markedly augment the production of •OH radicals on the surface of α-Fe2O3 under humid conditions. This augmentation was ascribed to the generation of superoxide radicals (•O2-) stemming from the activation of O2 through the Fe(II)/Fe(III) cycle and its combination with the H+ ion to produce hydrogen peroxide (H2O2) on the acidic surface. Moreover, the identification of moderate relative humidity as a pivotal factor in sustaining the surface acidity of iron oxide during SO2 aging underscores its crucial role in the coupling of iron dissolution, ROS production, and SO2 oxidation. Consequently, the interfacial reactions between SO2 and iron oxides under humid conditions are elucidated as atmospheric processes that enhance oxidation capacity rather than deplete ROS. These revelations offer novel insights into the mechanisms underlying •OH radical generation and oxidative potential within atmospheric interfacial chemistry.


Sujet(s)
Espèces réactives de l'oxygène , Dioxyde de soufre , Dioxyde de soufre/composition chimique , Composés du fer III/composition chimique , Radical hydroxyle/composition chimique , Oxydoréduction , Peroxyde d'hydrogène/composition chimique , Humidité
19.
Front Microbiol ; 15: 1394880, 2024.
Article de Anglais | MEDLINE | ID: mdl-38803372

RÉSUMÉ

Introduction: Higher alcohols are volatile compounds produced during alcoholic fermentation that affect the quality and safety of the final product. This study used a correlation analysis of transcriptomics and metabolomics to study the impact of the initial addition of SO2 (30, 60, and 90 mg/L) on the synthesis of higher alcohols in Saccharomyces cerevisiae EC1118a and to identify key genes and metabolic pathways involved in their metabolism. Methods: Transcriptomics and metabolomics correlation analyses were performed and differentially expressed genes (DEGs) and differential metabolites were identified. Single-gene knockouts for targeting genes of important pathways were generated to study the roles of key genes involved in the regulation of higher alcohol production. Results: We found that, as the SO2 concentration increased, the production of total higher alcohols showed an overall trend of first increasing and then decreasing. Multi-omics correlation analysis revealed that the addition of SO2 affected carbon metabolism (ko01200), pyruvate metabolism (ko00620), glycolysis/gluconeogenesis (ko00010), the pentose phosphate pathway (ko00030), and other metabolic pathways, thereby changing the precursor substances. The availability of SO2 indirectly affects the formation of higher alcohols. In addition, excessive SO2 affected the growth of the strain, leading to the emergence of a lag phase. We screened the ten most likely genes and constructed recombinant strains to evaluate the impact of each gene on the formation of higher alcohols. The results showed that ADH4, SER33, and GDH2 are important genes of alcohol metabolism in S. cerevisiae. The isoamyl alcohol content of the EC1118a-ADH4 strain decreased by 21.003%; The isobutanol content of the EC1118a-SER33 strain was reduced by 71.346%; and the 2-phenylethanol content of EC1118a-GDH2 strain was reduced by 25.198%. Conclusion: This study lays a theoretical foundation for investigating the mechanism of initial addition of SO2 in the synthesis of higher alcohols in S. cerevisiae, uncovering DEGs and key metabolic pathways related to the synthesis of higher alcohols, and provides guidance for regulating these mechanisms.

20.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38785268

RÉSUMÉ

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE