Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 84.068
Filtrer
1.
World J Hepatol ; 16(7): 973-979, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39086528

RÉSUMÉ

In this editorial we expand the discussion on the article by Zhang et al published in the recent issue of the World Journal of Hepatology. We focus on the diagnostic and therapeutic targets identified on the basis of the current understanding of the molecular mechanisms of liver disease. Transforming growth factor-ß (TGF-ß) belongs to a structurally related cytokine super family. The family members display different time- and tissue-specific expression patterns associated with autoimmunity, inflammation, fibrosis, and tumorigenesis; and, they participate in the pathogenesis of many diseases. TGF-ß and its related signaling pathways have been shown to participate in the progression of liver diseases, such as injury, inflammation, fibrosis, cirrhosis, and cancer. The often studied TGF-ß/Smad signaling pathway has been shown to promote or inhibit liver fibrosis under different circumstances. Similarly, the early immature TGF-ß molecule functions as a tumor suppressor, inducing apoptosis; but, its interaction with the mitogenic molecule epidermal growth factor alters this effect, activating anti-apoptotic signals that promote liver cancer development. Overall, TGF-ß signaling displays contradictory effects in different liver disease stages. Therefore, the use of TGF-ß and related signaling pathway molecules for diagnosis and treatment of liver diseases remains a challenge and needs further study. In this editorial, we aim to review the evidence for the use of TGF-ß signaling pathway molecules as diagnostic or therapeutic targets for different liver disease stages.

2.
R Soc Open Sci ; 11(7): 240353, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39086819

RÉSUMÉ

Ruthenium(II) complexes (Ru1-Ru3) with the general formula [Ru(O-O)(PPh3)2(bipy)]PF6, bearing two triphenylphosphine (PPh3), bipyridine (bipy) and a series of natural and synthetic ß-diketones (O,O) ligands were synthesized and characterized using various analytical techniques. The interaction between the complexes and calf thymus DNA (CT-DNA) was investigated and demonstrated a weak interaction. The cytotoxicity of the complexes was investigated against breast cancer cells (MDA-MB-231 and MCF-7), lung cancer cells (A549), cisplatin-resistant ovarian cancer cells (A2780cis), as well as non-tumour lung (MRC-5) and non-tumour breast (MCF-10A) cell lines. All complexes exhibited cytotoxic activity against all the cell lines studied, with half maximal inhibitory concentration (IC50) values ranging from 0.39 to 13 µM. Notably, the three complexes demonstrated selectivity against the A2780cis cell line, with IC50 ranging from 0.39 to 0.82 µM. Among them, Ru2 exhibited the highest cytotoxicity, with an IC50 value of 0.39 µM. Consequently, this new class of complexes shows good selectivity towards cisplatin-resistant ovarian cancer cells and it is promising for further investigation as anti-cancer agents.

3.
Front Endocrinol (Lausanne) ; 15: 1380013, 2024.
Article de Anglais | MEDLINE | ID: mdl-39086902

RÉSUMÉ

In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.


Sujet(s)
Biologie informatique , microARN , Ostéoblastes , Hormone parathyroïdienne , microARN/génétique , Ostéoblastes/effets des médicaments et des substances chimiques , Ostéoblastes/métabolisme , Biologie informatique/méthodes , Hormone parathyroïdienne/pharmacologie , Humains , Réseaux de régulation génique/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Animaux , Tériparatide/pharmacologie
4.
ACS Sens ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39088458

RÉSUMÉ

ß-Thalassemia is a prevalent type of severe inherited chronic anemia, primarily identified in developing countries. The identification of single nucleotide polymorphisms (SNPs) plays a vital role in the early diagnosis of genetic diseases. Here, we reported the development of an amplification-free fiber optic nanogold-linked sorbent assay method using a fiber optic particle plasmon resonance (FOPPR) biosensor for rapid and ultrasensitive detection of SNPs. Herein, MutS protein was selected as the biorecognition capture probe and immobilized on the sensing region to capture the target mutant DNA, which was hybridized with a single-base mismatched single-stranded DNA labeled by a gold nanoparticle (AuNP). The AuNP acts as a signaling agent to be detected by the FOPPR biosensor when it is bound on the fiber core surface. The method effectively differentiates mismatched double-stranded DNA by MutS protein from perfectly matched/complementary dsDNA. It exhibits an impressively low detection limit for the detection of SNPs at approximately 10-16 M using low-cost sensor chips and devices. By determination of the ratio of mutant DNA to normal DNA in cell-free genomic DNA from blood samples, this method is promising for diagnosing ß-thalassemia in fetuses without invasive testing techniques.

5.
Food Chem ; 460(Pt 2): 140624, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39089040

RÉSUMÉ

The ß-glucosidases known to improve tea aroma are all mesothermal enzymes, limiting their use under brewing conditions. Based on the properties analysis and molecular docking, the thermostable ß-glucosidase (TPG) from Thermotoga petrophlia showed potential to enhance tea aroma. Treatment by recombinant TPG at 90 °C, the floral, sweet and grassy notes of instant Oolong tea were increased, while the roasted, caramel and woody notes were decreased. The improved floral, sweet and grassy notes were related to increase releasing of benzyl alcohol (floral), geraniol (floral), (Z)-3-hexen-1-ol (grassy), benzaldehyde (sweet) and 1-hexanol (grassy) by TPG hydrolyzing of (Z)-3-hexenyl-ß-D-glucopyranoside, hexanyl-ß-D-glucopyranoside (HGP), benzyl-ß-D-glucopyranoside, prunasin and geranyl-ß-D-glucopyranoside (GGP), respectively. Although the catalytic efficiency of TGP to GGP was about twice that to HGP, HPG was more competitive than GGP when they mixed. Combined with microstructure analysis, the structure-function relationship of TPG-influencing tea aroma were understood. This study provided the method of how to mining new function of characterized ß-glucosidases, as well as a theoretical basis for the development of new tea products.

6.
Comput Biol Med ; 180: 108969, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39089106

RÉSUMÉ

ß-Glucuronidase, a crucial enzyme in drug metabolism and detoxification, represents a promising target for therapeutic intervention due to its potential to modulate drug pharmacokinetics and enhance therapeutic efficacy. Herein, we assessed the inhibitory potential of phytochemicals from Hibiscus trionum against ß-glucuronidase. Grossamide and grossamide K emerged as the most potent ß-glucuronidase inhibitors with IC50 values of 0.73 ± 0.03 and 1.24 ± 0.03 µM, respectively. The investigated alkaloids effectively inhibited ß-glucuronidase-catalyzed PNPG hydrolysis through a noncompetitive inhibition mode, whereas steppogenin displayed a mixed inhibition mechanism. Molecular docking analyses highlighted grossamide and grossamide K as inhibitors with the lowest binding free energy, all compounds successfully docked into the same main binding site occupied by the reference drug Epigallocatechin gallate (EGCG). We explored the interaction dynamics of isolated compounds with ß-glucuronidase through a 200 ns molecular dynamics (MD) simulation. Analysis of various MD parameters revealed that grossamide and grossamide K maintained stable trajectories and demonstrated significant energy stabilization upon binding to ß-glucuronidase. Additionally, these compounds exhibited the lowest average interaction energies with the target enzyme. The MM/PBSA calculations further supported these findings, showing the lowest binding free energies for grossamide and grossamide K. These computational results are consistent with experimental data, suggesting that grossamide and grossamide K could be potent inhibitors of ß-glucuronidase.

7.
J Colloid Interface Sci ; 677(Pt A): 217-230, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39089128

RÉSUMÉ

HYPOTHESIS: Disulfide bonds in proteins are strong chemical bonds forming the secondary and tertiary structure like in the dairy protein ß-lactoglobulin. We hypothesize that the partial or complete removal of disulfide bonds affects the structural rearrangement of proteins caused by intra- and intermolecular interactions that in turn define the interfacial activity of proteins at oil/water interfaces. The experimental and numerical investigations contribute to the mechanistic understanding of the structure-function relationship, especially for the interfacial adsorption behavior of proteins. EXPERIMENTAL AND NUMERICAL: Systematically, the 5 cysteines of ß-lactoglobulin were recombinantly exchanged by alanine. First, the protein structure of the variants in bulk was analyzed with Fourier-transform-infrared-spectroscopy and molecular dynamic simulations. Second, the structural changes after adsorption to the interface have been also analyzed by molecular dynamic simulations. The adsorption behavior was investigated by pendant drop analysis and the interfacial film properties by dilatational rheology. FINDINGS: The structural flexibility of ß-lactoglobulin with no cysteines encourages its unfolding at the interface, and accelerates the interfacial protein film formation that results in more visco-elastic films in comparison to the reference.

8.
Article de Anglais | MEDLINE | ID: mdl-39089417

RÉSUMÉ

BACKGROUND: Post-traumatic capsular contracture is a common complication of joint injury and surgery. Post-traumatic capsular contracture is associated with fibrosis characterized by excessive differentiation and proliferation of myofibroblasts and abnormal secretion and accumulation of extracellular matrix. Previous studies have suggested that IL11 plays a role in myocardial fibrosis. We thus hypothesized that IL11 may play a fibrotic role during capsular contracture, in order to discover new targets for preventing joint capsule contracture METHODS: We constructed a post-traumatic contracture model by excessively extending the knee joint and fixing the joint in the flexion position, and a post-traumatic joint capsule contracture model was constructed in the wild-type, IL11-/-, IL11R -/-, α-SMA-cre-IL11fl/fl, α-SMA-cre-IL11Rfl/fl mouse strain, with wild-type mice without any treatment of the knee joint as the control group. Fibrotic markers and the expression of IL11 and IL11R in knee joint tissue were detected in each group of mice. The NIH3T3 cell line was used for in vitro analyses. The expression of fibrosis markers, IL11, TGFß and ERK1/2 were detected by western blot, ELISA and RT-qPCR. RESULTS: Inhibition of IL11 inhibited ERK1/2 phosphorylation, reduced the secretion of collagen in the joint capsule, and inhibited the excessive differentiation and proliferation of myofibroblasts in the post-traumatic joint capsule contracture, thus alleviating the joint capsule contracture and obtaining better joint mobility. CONCLUSION: Downregulation of IL11 in traumatic joint capsule contracture inhibits ERK1/2 phosphorylation, thus significantly relieving joint capsule contracture. Our findings indicate the TGFß/IL11/ERK1/2 axis is an important pathway for the differentiation of fibroblasts into myofibroblasts. Anti-IL11 treatment is an effective means to prevent traumatic joint capsule contracture.

9.
Int J Biol Macromol ; : 133991, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39089904

RÉSUMÉ

Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced ß-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of ß-galactosidase in immobilized cells towards o-nitrophenyl ß-D-galactoside were determined to be 3.446 mM and 2210 µmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.

10.
Pharmacoepidemiol Drug Saf ; 33(8): e5806, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39090769

RÉSUMÉ

PURPOSE: This study aimed to investigate the prescription of beta-blockers (ß-blockers) for patients with asthma. METHODS: In this retrospective cross-sectional study using the National Patient Sample (NPS) of the Health Insurance Review and Assessment Service (HIRA) of South Korea, ß-blockers and asthma medications were investigated using generic name codes provided by HIRA. Concomitant administration was identified when a ß-blocker and an asthma medication were co-prescribed in one billing statement or when separate ß-blocker and asthma prescriptions had overlapping dates of use. RESULTS: In the 1027 patients with asthma who were prescribed non-selective ß-blockers (non-SBs), 3087 non-SB prescriptions were identified, of which 62.3% and 37.3% were for carvedilol and propranolol, respectively. Of the 906 patients with asthma prescribed selective ß-blockers (SBs), 2942 SB prescriptions were identified, of which 48.5%, 28.3%, and 20.3% were for bisoprolol, atenolol, and nebivolol, respectively. Overall, 2149 non-SB and 2124 SB prescriptions with overlapping use dates with asthma medications were identified, which were prescribed to 726 and 657 patients, accounting for 70.7% and 72.5% of the patients receiving non-SBs and SBs, respectively. ß2-agonists accounted for 39.9% of the concomitant asthma medications with overlapping dates of use with non-SBs. Co-prescribing of bronchodilators occurred at a rate of 38.7% and 45.1% for the 3087 non-SB prescriptions and 2942 SB prescriptions, respectively. CONCLUSIONS: Carvedilol and propranolol accounted for half of all ß-blockers prescribed to asthma patients. Prescribing ß-blockers to patients with asthma requires caution to prevent exacerbation of asthma and drug interactions between ß-blockers and co-prescribed asthma medications.


Sujet(s)
Antagonistes bêta-adrénergiques , Asthme , Humains , Asthme/traitement médicamenteux , Antagonistes bêta-adrénergiques/usage thérapeutique , Antagonistes bêta-adrénergiques/administration et posologie , Études rétrospectives , Études transversales , Mâle , Femelle , République de Corée , Adulte d'âge moyen , Adulte , Sujet âgé , Ordonnances médicamenteuses/statistiques et données numériques , Jeune adulte , Antiasthmatiques/usage thérapeutique , Antiasthmatiques/administration et posologie , Types de pratiques des médecins/statistiques et données numériques , Adolescent
11.
Chem Biol Drug Des ; 104(2): e14598, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39090783

RÉSUMÉ

Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1ß to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17ß-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.


Sujet(s)
Acné juvénile , Aromatase , Furanes , Lignanes , Simulation de docking moléculaire , Pharmacologie des réseaux , Animaux , Furanes/composition chimique , Furanes/pharmacologie , Souris , Lignanes/pharmacologie , Lignanes/composition chimique , Lignanes/usage thérapeutique , Acné juvénile/traitement médicamenteux , Acné juvénile/microbiologie , Aromatase/métabolisme , Aromatase/composition chimique , Transduction du signal/effets des médicaments et des substances chimiques , Peau/anatomopathologie , Peau/effets des médicaments et des substances chimiques , Peau/métabolisme , Inflammation/traitement médicamenteux , Inflammation/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/antagonistes et inhibiteurs , Inflammasomes/métabolisme , Humains , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique , Anti-inflammatoires/usage thérapeutique , Propionibacterium acnes/effets des médicaments et des substances chimiques , Interleukine-1 bêta/métabolisme , Modèles animaux de maladie humaine
12.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39091024

RÉSUMÉ

Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1ß (IL-1ß) signaling. Leptin significantly induced maturation and secretion of IL-1ß in cultured rat hepatocytes. Interestingly, inhibition of IL-1ß signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1ß signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1ß signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1ß signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1ß signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1ß signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

13.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39091181

RÉSUMÉ

ß-glucan, a polysaccharide found in various sources, exhibits unique physicochemical properties, yet its high polymerization limits clinical applications because of its solubility. Addressing this limitation, we introduce PPTEE-glycan, a highly purified soluble ß-1,3/1,6-glucan derived from Aureobasidium pullulans. The refined PPTEE-glycan demonstrated robust immune stimulation in vitro, activated dendritic cells, and enhanced co-stimulatory markers, cytokines, and cross-presentation. Formulated as a PPTEE + microemulsion (ME), it elevated immune responses in vivo, promoting antigen-specific antibodies and CD8+ T cell proliferation. Intratumoral administration of PPTEE + ME in tumor-bearing mice induced notable tumor regression, which was linked to the activation of immunosuppressive cells. This study highlights the potential of high-purity Aureobasidium pullulans-derived ß-glucan, particularly PPTEE, as promising immune adjuvants, offering novel avenues for advancing cancer immunotherapy.

14.
Hum Antibodies ; 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39093067

RÉSUMÉ

BACKGROUND: Many studies have examined the role of inflammation in the development of diabetic neuropathy (DPN). OBJECTIVE: Evaluate the relation of the serum level of Transforming Growth Factor-ß and Tumor Necrosis Factor-α and development of diabetic peripheral neuropathy DPN. METHODS: In a case-control study, randomly selected 140 diabetic patients were included, the randomly selected patients were divided equally and matched into a case group who have diabetic peripheral neuropathy and diabetic neuropathy-free patients as a control group. For both groups whole blood sample was examined to compare for (TGF-ß), and (TNF-α) levels determination by ELISA technique. RESULTS: The age of the study samples ranged from 25 to 80 years with a male ratio of 1.45:1 although the sex differences between both groups were not significant. The mean levels of (TNF-α) and (TGF-ß) was significantly higher among cases group than that of controls group (254.86 ± 75.9 vs158.01 ± 50.600) for TNF-α and for TGF- ß (312.85 ± 62.27 vs. 217.82 ± 52.95) respectively. Both TNF-α and TGF-ß have high sensitivity and specificity in detection of DPN. The sensitivity of TNF-α was 95.7% and specificity of 61.4% area under the ROC curve (AUC) of 0.870 ± 0.029, while the sensitivity of TGF-ß was 91.4%, and specificity of 67.1 with good area under the ROC curve (AUC) of 0.891 ± 0.026 (P=0.000). CONCLUSIONS: TNF-α and TGF -ß are significantly elevated levels in patients with DPN, these cytokines could be used as indicators for the development of DPN.

15.
Article de Anglais | MEDLINE | ID: mdl-39093391

RÉSUMÉ

17ß-Estradiol (E2) is a novel micro-pollutant that is widely distributed in aquatic sediments and has a universal toxicological effect on aquatic organisms. However, its ecological impact on aquatic microorganisms is not yet clear. In this study, we designed a simulation system for oligotrophic water deposition in the laboratory, analyzed the impact of different concentrations of E2 pollution on the carbon metabolism activity (carbon gas emission rate) of water microorganisms. Based on high-throughput sequencing results, we revealed the impact of E2 pollution on the community structure succession and metabolic function of bacteria, archaea, and methanogens in the simulated system, explored the impact mechanism of E2 pollution on microbial carbon metabolism in water bodies. Our results suggested that E2 significantly impacts the bacterial and archaeal community rather than the methanogen community, thereby indirectly inhibiting methane production. The achievements will bridge the theoretical gap between estrogen metabolism and carbon metabolism in sedimentary environments and contribute to enriching the ecological toxicology theory of steroid estrogen.

16.
Protein Cell ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39087719

RÉSUMÉ

Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of C. elegans with P. aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal PI(4,5)P2 and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity, and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.

17.
J Biochem Mol Toxicol ; 38(8): e23788, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39087918

RÉSUMÉ

In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.


Sujet(s)
Conduits biliaires , Cholestase , Cirrhose du foie , Rat Wistar , Xanthophylles , Animaux , Xanthophylles/pharmacologie , Xanthophylles/usage thérapeutique , Mâle , Rats , Cholestase/anatomopathologie , Cholestase/métabolisme , Cholestase/traitement médicamenteux , Cirrhose du foie/métabolisme , Cirrhose du foie/anatomopathologie , Cirrhose du foie/traitement médicamenteux , Cirrhose du foie/prévention et contrôle , Ligature , Conduits biliaires/chirurgie , Foie/effets des médicaments et des substances chimiques , Foie/anatomopathologie , Foie/métabolisme , Facteur de croissance transformant bêta-1/métabolisme
18.
Bioresour Technol ; 408: 131223, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111402

RÉSUMÉ

This study investigated the effects of varying lipid ratios on the anaerobic co-digestion of high-lipid food waste (FW) in a mesophilic anaerobic membrane bioreactor (AnMBR). At a lipid concentration of 5 %, optimal biogas production (3.84 L/L/d) and lipid removal efficiency (78 %) were achieved; however, increasing lipid concentrations resulted in significant accumulations of long-chain fatty acids (LCFAs) and volatile fatty acids (VFAs). Batch tests further demonstrated the impact of various types of LCFAs, with stearic acid showing the slowest microbial growth rate (0.033d-1), confirming its role in the accumulation of acetate-dominated VFAs, potentially limiting the methanogenesis process at elevated lipid levels. Furthermore, at 8 % lipid content, the downregulation of key LCFA degradation enzymes and dominance of hydrogenotrophic methanogens indicated adverse conditions. The importance of the intricate interplay between LCFA degradation kinetics and microbial community for the system efficiency was evidenced, offering insights for optimizing and managing high-lipidic wastes.

19.
Int J Biol Macromol ; 277(Pt 4): 134538, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111462

RÉSUMÉ

Dihydro-ß-ionone, a high-value compound with distinctive fragrance, is widely utilized in the flavor and fragrance industries. However, its low abundance in plant sources poses a significant challenge to its application through traditional extraction methods. Development of an enzyme cascade reaction with artificial design offers a promising alternative. Herein, a short-chain dehydrogenase NaSDR, was identified from Novosphingobium aromaticivorans DSM 12444, which exhibited a high activity in converting ß-ionol to ß-ionone. A novel biosynthesis route to produce dihydro-ß-ionone from ß-ionol was developed, by utilizing alcohol dehydrogenase NaSDR and enoate reductase AaDBR1. Under the optimized conditions (0.29 mg/mL NaSDR, 0.39 mg/mL AaDBR1, 1 mM NADP+ and 2.5 mM ß-ionol at 40 °C for 2 h), a maximum yield (173.11 mg/L) of dihydro-ß-ionone was achieved with a molar conversion rate of 35.6 %, which was 2.7-fold higher than that before optimization. Additionally, this cascade reaction achieved self-sufficient NADPH regeneration through the actions of NaSDR and AaDBR1. This study offered a fresh perspective for achieving a green and sustainable synthesis of dihydro-ß-ionone and could inspire on another natural products biosynthesis.

20.
Int J Biol Macromol ; 277(Pt 3): 134509, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111508

RÉSUMÉ

Aiming to improve the retrieval rate of retrievable vena cava filters (RVCF) and extend its dwelling time in vivo, a novel hydrogel coating loaded with 10 mg/mL heparin and 30 mg/mL cyclodextrin/paclitaxel (PTX) inclusion complex (IC) was prepared. The drug-release behavior in the phosphate buffer solution demonstrated both heparin and PTX could be sustainably released over approximately two weeks. Furthermore, it was shown that the hydrogel-coated RVCF (HRVCF) with 10 mg/mL heparin and 30 mg/mL PTX IC effectively extended the blood clotting time to above the detection limit and inhibited EA.hy926 and CCC-SMC-1 cells' proliferation in vitro compared to the commercially available bare RVCF. Both the HRVCF and the bare RVCF were implanted into the vena cava of sheep and retrieved at at 2nd and 4th week after implantation, revealing that the HRVCF had a significantly higher retrieval rate of 67 % than the bare RVCF (0 %) at 4th week. Comprehensive analyses, including histological, immunohistological, and immunofluorescent assessments of the explanted veins demonstrated the HRVCF exhibited anti-hyperplasia and anticoagulation properties in vivo, attributable to the hydrogel coating, thereby improving the retrieval rate in sheep. Consequently, the as-prepared HRVCF shows promising potential for clinical application to enhance the retrieval rates of RVCFs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE