Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Antonie Van Leeuwenhoek ; 111(8): 1403-1419, 2018 Aug.
Article de Anglais | MEDLINE | ID: mdl-29748902

RÉSUMÉ

The endorheic basins of the Northern Chilean Altiplano contain saline lakes and salt flats. Two of the salt flats, Gorbea and Ignorado, have high acidic brines. The causes of the local acidity have been attributed to the occurrence of volcanic native sulfur, the release of sulfuric acid by oxidation, and the low buffering capacity of the rocks in the area. Understanding the microbial community composition and available energy in this pristine ecosystem is relevant in determining the origin of the acidity and in supporting the rationale of conservation policies. Besides, a comparison between similar systems in Australia highlights key microbial components and specific ones associated with geological settings and environmental conditions. Sediment and water samples from the Salar de Gorbea were collected, physicochemical parameters measured and geochemical and molecular biological analyses performed. A low diversity microbial community was observed in brines and sediments dominated by Actinobacteria, Algae, Firmicutes and Proteobacteria. Most of the constituent genera have been reported to be either sulfur oxidizing microorganisms or ones having the potential for sulfur oxidation given available genomic data and information drawn from the literature on cultured relatives. In addition, a link between sulfur oxidation and carbon fixation was observed. In contrast, to acid mine drainage communities, Gorbea microbial diversity is mainly supported by chemolithoheterotrophic, facultative chemolithoautotrophic and oligotrophic sulfur oxidizing populations indicating that microbial activity should also be considered as a causative agent of local acidity.


Sujet(s)
Bactéries/classification , Lacs/microbiologie , Phylogenèse , Sels , Soufre/métabolisme , Bactéries/métabolisme , Biodiversité , Cycle du carbone , Chili , ADN bactérien/génétique , Métabolisme énergétique , Sédiments géologiques/microbiologie , Métagénomique , ARN ribosomique 16S/génétique
2.
Stand Genomic Sci ; 12: 84, 2017.
Article de Anglais | MEDLINE | ID: mdl-29270251

RÉSUMÉ

10.1601/nm.2199 CLST is an extremely acidophilic gamma-proteobacteria that was isolated from the Gorbea salt flat, an acidic hypersaline environment in northern Chile. This kind of environment is considered a terrestrial analog of ancient Martian terrains and a source of new material for biotechnological applications. 10.1601/nm.2199 plays a key role in industrial bioleaching; it has the capacity of generating and maintaining acidic conditions by producing sulfuric acid and it can also remove sulfur layers from the surface of minerals, which are detrimental for their dissolution. CLST is a strain of 10.1601/nm.2199 able to tolerate moderate chloride concentrations (up to 15 g L-1 Cl-), a feature that is quite unusual in extreme acidophilic microorganisms. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 3,974,949 bp draft genome is arranged into 40 scaffolds of 389 contigs containing 3866 protein-coding genes and 75 RNAs encoding genes. This is the first draft genome of a halotolerant 10.1601/nm.2199 strain. The release of the genome sequence of this strain improves representation of these extreme acidophilic Gram negative bacteria in public databases and strengthens the framework for further investigation of the physiological diversity and ecological function of 10.1601/nm.2199 populations.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE