Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 588
Filtrer
1.
Plant Cell Environ ; 2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39375916

RÉSUMÉ

In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.

2.
Front Plant Sci ; 15: 1442123, 2024.
Article de Anglais | MEDLINE | ID: mdl-39359629

RÉSUMÉ

Introduction: Long-term application of excessive nitrogen (N) not only leads to low N use efficiency (NUE) but also exacerbates the risk of environmental pollution due to N losses. Substituting partial chemical N with organic fertilizer (SP) is an environmentally friendly and sustainable fertilization practice. However, the appropriate rate of SP in rainfed maize cropping systems in semi-arid regions of China is unknown. Methods: Therefore, we conducted a field experiment between 2021 and 2022 in a semi-arid region of Northern China to investigate the effects of SP on maize growth, carbon and N metabolism (C/NM), and NUE. The following treatments were used in the experiment: no N application (CK), 100% chemical N (SP0, 210 kg N ha-1), and SP substituting 15% (SP1), 30% (SP2), 45% (SP3), and 60% (SP4) of the chemical N. The relationship between these indicators and grain yield (GY) was explored using the Mantel test and structural equation modeling (SEM). Results and discussion: The results found that the SP1 and SP2 treatments improved the assimilates production capacity of the canopy by increasing the leaf area index, total chlorophyll content, and net photosynthetic rate, improving dry matter accumulation (DMA) by 6.2%-10.6%, compared to the SP0 treatment. SP1 and SP2 treatments increased total soluble sugars, starch, free amino acids, and soluble protein contents in ear leaves via increasing the enzymatic reactions related to C/NM in ear leaves during the reproductive growth stage compared with SP0 treatment. The highest plant nitrogen uptake (PNU) and nitrogen recovery efficiency were obtained under the SP2 treatment, and the GY and nitrogen agronomic efficiency were higher than the SP0 treatment by 9.2% and 27.8%. However, SP3 and SP4 treatments reduced DMA and GY by inhibiting C/NM in ear leaves compared to SP0 treatment. Mantel test and SEM results revealed that SP treatments indirectly increased GY and PNU by directly positively regulating C/NM in maize ear leaves. Therefore, in the semi-arid regions, substituting 30% of the chemical N with SP could be considered. This fertilizer regime may avoid GY reduction and improve NUE. This study provides new insights into sustainable cultivation pathways for maize in semi-arid regions.

3.
Heliyon ; 10(17): e36906, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39286075

RÉSUMÉ

The worldwide shift towards renewable energy sources, including solar and wind, is progressing rapidly. This change is driven by decreasing prices and technical advancements that are becoming more centralized. The objective is to develop a cutting-edge approach and technology that seamlessly incorporates photovoltaic (PV) energy sources into a power network while ensuring grid stability. This research evaluates the lifetime and degradation of PV inverters under real operating conditions, focusing on semi-arid climate scenarios. Current papers demonstrate a yearly failure rate of 1-15% for PV inverters, highlighting the need for a thorough reliability evaluation. This investigation research applied a unique technique that included continuous monitoring of PV inverter performance parameters by comparing the measured with the predicted normal operating output. The results show that Sandia's inverter performance model is highly suitable for accurately modeling normal PV inverter behavior. Furthermore, weighted efficiency dropped by 3.96%, 0.63% and 1.29% respectively for 7 kW , 15 kW and 20 kW photovoltaic systems over the five years. These findings have implications for comprehensive maintenance strategies, including regular inspections, safety protocols, and remote monitoring solutions. Ultimately, this research paper sheds light on the causes of declining solar inverter performance and provides suggestions for enhancing PV plant maintenance and reliability. It also represents an outstanding reference given the literature shortage.

4.
Heliyon ; 10(18): e37659, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-39309777

RÉSUMÉ

Maize production under low-input agricultural systems in semi-arid areas of Sub-Saharan Africa faces significant challenges, primarily stemming from the synergistic impacts of climate variability and suboptimal agronomic practices. Harnessing soil microbiota, particularly arbuscular mycorrhizal fungi (AMF), represents a pivotal strategy for bolstering low-input systems. However, their functional utility is contingent upon their compatibility with the prevailing environmental conditions and biotic interactions. This study examines the influence of two distinct AMF inoculants on the growth and yield attributes of diverse maize genotypes across varying seasons within semi-arid regions of Kenya. We hypothesized that AMF inoculants exhibit differential adaptability to varying environmental sites and seasons, and their interaction will enhance the provision of key ecosystem services important for maize production. Field experiments were conducted in three semi-arid Counties (Tharaka-Nithi, Embu, and Kitui) during the 2019/2020 cropping seasons. A randomized complete block design with three replications and three treatments was adopted. Treatments consisted of Rhizatech (a commercial AMF inoculant), a consortium of AMF isolates (Rhizophagus irregularis and Funneliformis mosseae), and a non-inoculated control. In season one, notable interaction effects were observed for both site × maize genotype (p = 0.0007) and site × AMF inoculation (p < 0.0001), whereby Duma 43 genotype had the highest yield in Embu (11.93 t ha-1) and Kitui (11.76 t ha-1) counties, and Rhizatech and consortium inoculation consistently led to elevated grain yields across all three genotypes in Kitui, surpassing non-inoculated controls. AMF inoculation notably augmented phosphorus (P) uptake, with Rhizatech demonstrating a 79.7 % increase and consortium showing a 38.7 % increase in shoot P content compared to control plants in season 1. These findings highlight the complex interplay between AMF effectiveness, seasonal variations, and maize diversity. Further research is needed to elucidate the underlying mechanisms driving these seasonal shifts, allowing for optimized AMF inoculation strategies for improved maize performance under diverse conditions.

5.
Int J Biometeorol ; 2024 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-39320541

RÉSUMÉ

Extreme temperatures in urban areas cause discomfort leading to a rise in health risks, like heat-related mortality (hyperthermia). It is, hence, important to have a comfortable thermal environment. Assessing outdoor thermal comfort is challenging and complicated due to its dependencies on biometeorological and psychological factors. This study investigates the outdoor thermal comfort in Ahmedabad, a city with semi-arid climate in India through biometeorological measurements and thermal comfort surveys. The study carried out thermal comfort surveys of 1620 subjects spread across the city in 2022-23 covering all the seasons. The temperature and relative humidity were in the range of 21.6 °C to 44.9 °C and 8 to 86% respectively. About 43% of the subjects felt thermally comfortable during the survey. Based on the survey results, the annual neutral Physiological Equivalent Temperature (PET) obtained was 27.5 °C, and the comfortable PET range was between 21.1 °C and 33.9 °C which covers a wide range. Neutral PET for summer and winter seasons obtained were similar, which indicates winters are getting milder and people of Ahmedabad are getting more adaptive towards warmer temperature. These results hold special significance as there is limited research on outdoor thermal comfort in such climate zone of India.

6.
Front Microbiol ; 15: 1404602, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247695

RÉSUMÉ

Biological soil crusts (biocrusts) constitute a crucial biological component of the soil surface in arid and semi-arid ecosystems. Understanding the variations in soil microbial community assembly across biocrust successional stages is essential for a deeper comprehension of microbial biodiversity and desert ecosystem functioning. However, knowledge about the mechanisms of microbial community assembly and the factors influencing its development remains limited. In this study, we utilized amplicons sequencing to assess the compositions of bacterial and fungal communities in bare sand and three types of biocrusts (light cyanobacterial biocrusts, dark cyanobacterial biocrusts, and moss crusts). Subsequently, we analyzed the ecological processes shaping microbial community composition and structure, along with the influencing factors. Our results revealed a significant increase in bacterial diversity and no significant changes in fungal diversity during biocrust development. The relative abundances of the copiotrophic bacteria (e.g., Actinobacteria, Acidobacteria, and Bacteroidetes) showed significant increases, while oligotrophic bacteria (e.g., Proteobacteria and Firmicutes) decreased over time. Moreover, the relative abundances of Ascomycota, which exhibit strong resistance to adverse environmental conditions, significantly decreased, whereas Basidiomycota, known for their ability to degrade lignin, significantly increased throughout biocrust development. Additionally, stochastic processes (dispersal limitation and drift) predominantly drove the assemblies of both bacterial and fungal communities. However, the relative importance of deterministic processes (homogeneous selection) in bacterial assembly increased during biocrust development. Structural equation modeling indicated that bacterial community assembly was primarily related to soil water content, whereas fungal community assembly was primarily related to total organic carbon. These findings provide a scientific foundation for investigating the formation and development of biocrusts, and further insights into the conservation and sustainable management of biocrust resources under future climate change scenarios.

7.
Eco Environ Health ; 3(3): 271-280, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39252856

RÉSUMÉ

Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.

8.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1907-1914, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39233420

RÉSUMÉ

Real-time assessment of ecological environment quality in arid and semi-arid regions is crucial for the sustainable development of ecological environments in China. In this study, we constructed a topsoil remote sensing ecological index (TRSEI) by coupling five indicators, greenness, wetness, dryness, topsoil grain size, and heat, with the Google Earth Engine (GEE). With the index, we evaluated the ecological environment quality of Wuchuan County from 1990 to 2020, and examined the spatio-temporal variations of ecological environment quality and its driving factors by using univariate linear regression, multiple regression residual analysis, and Hurst index. Results showed that the first principal component of the TRSEI in the study area contributed over 70%, with a mean eigenvalue of 0.148, indicating the effective integration of various ecological indicators by TRSEI. The topsoil grain size index was essential for the assessment of ecological environment quality in arid and semi-arid regions. From 1990 to 2020, the fluctuation range of TRSEI in the study area was between 0.289 and 0.458, showing an overall slight deterioration trend. The ecological environment quality of cropland and de-farming region had improved, with the improved area accounting for 47.9% of the total area. The grassland, barren land, and construction land areas had deteriorated, with the deteriorated area accounting for 52.1% of the total area. In the future, 36.9% of the regions would experience continuous improvement in ecological environment quality, while 41.4% might continue to dete-riorate. Human activities were the primary driving factor for the changes in ecological environment quality in arid and semi-arid regions, accounting for 88.6% of the total area. Climate change also had a significant impact, accounting for 11.4% of the total area. The TRSEI could effectively assess the ecological environment quality of arid and semi-arid regions, providing a scientific basis for ecological conservation and construction in these areas.


Sujet(s)
Climat désertique , Écosystème , Surveillance de l'environnement , Technologie de télédétection , Chine , Technologie de télédétection/méthodes , Surveillance de l'environnement/méthodes , Conservation des ressources naturelles/méthodes , Écologie/méthodes
9.
Insects ; 15(9)2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39336664

RÉSUMÉ

This study aimed to analyze the population dynamics of the mite Varroa destructor in honey bee (Apis mellifera) colonies in a temperate semi-arid climate in Mexico. Ten colonies homogeneous in population, food stores, and levels of mite infestation were used. The mite infestation rate in brood and adult bees, total number of mites, daily mite fall, brood and adult bee population, and food stores were determined periodically for 10 months. There was a significant effect (p < 0.05) of sampling period on the population of V. destructor in adult bees, brood, total mite population, and daily fallen mites. The total mite population increased by 26% on average per colony. The increase in brood amount reduced the mite infestation rate in adult bees, and the opposite occurred when the brood decreased. Monitoring V. destructor populations by recording fallen mites is more reliable than determining mite infestation rates in bees, as mite fall has a dynamic pattern similar to that of the total mite population. The best period to apply an acaricide treatment in the region of study is between November and December because most mites were in the phoretic phase, since there was less brood in the colonies compared to other times.

10.
Sci Rep ; 14(1): 21922, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39300108

RÉSUMÉ

Land use and land cover change (LULCC) have profoundly altered land surface properties and ecosystem functions, including carbon and water production. While mapping these changes from local to global scales has become more achievable due to advancements in earth observations and remote sensing, linking land cover changes to ecosystem functions remains challenging, especially at regional scale. Our study attempts to fill this gap by employing a computationally efficient method and two types of widely used high-resolution satellite images. We first investigated the contribution of landscape composition to ecosystem function by examining how land cover and proportion affected gross primary production (GPP) and evapotranspiration (ET) at six macro-landscapes in Mongolia and Kazakhstan. We hypothesized that both ecosystem and landscape GPP and ET are disproportionate to their composition and, therefore, changes in land cover will have asymmetrical influences on landscape functions. We leveraged a computational-friendly linear downscaling approach to align the coarse spatial resolution of MODIS (500 m) with a fine-grain and localized land cover map developed from Landsat (30 m) for six provinces in countries where intensive LULCC occurred in recent decades. By establishing two metrics-function to composition ratio (F/C) and function to changes in composition change (ΔF/ΔC)-we tested our hypothesis and evaluated the impact of land cover change on ecosystem functions within and among the landscapes. Our results show three major themes. (1) The five land cover types have signature downscaled ET and GPP that appears to vary between the two countries as well as within each country. (2) F/C of ET and GPP of forests is statistically greater than 1 (i.e., over-contributing), whereas F/C of grasslands and croplands is close to or slightly less than 1 (i.e., under-contribution). F/C of barrens is clearly lower than 1 but greater than zero. Specifically, a unit of forest generates 1.085 unit of ET and 1.123 unit of GPP, a unit of grassland generates 0.993 unit of ET and GPP, and a unit of cropland produces 0.987 unit of ET and 0.983 unit of GPP. The divergent F/C values among the land cover classes support the hypothesis that landscape function is disproportionate to its composition. (3) ΔET/ΔC and ΔGPP/ΔC of forests and croplands showed negative values, while grasslands and barrens showed positive values, indicating that converting a unit of forest to other land cover leads to a decrease in ET and GPP, while converting units of grassland or barren to other land cover classes will result in increased ET and GPP. This linear downscaling approach for calculating F/C and ΔF/ΔC is labor-saving and cost-effective for rapid assessment on the impact of land use land cover change on ecosystem functions.

11.
Water Res ; 267: 122472, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39305525

RÉSUMÉ

This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.

12.
New Phytol ; 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39301581

RÉSUMÉ

Redistribution of precipitation across seasons is a widespread phenomenon affecting dryland ecosystems globally. However, the impacts of shifting seasonal precipitation patterns on carbon (C) cycling and sequestration in dryland ecosystems remain poorly understood. In this study, we conducted a 10-yr (2013-2022) field manipulative experiment that altered the timing of growing-season precipitation peaks in a semi-arid grassland. We found that the delayed precipitation peak suppressed plant growth and thus reduced gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity due to middle growing-season water stress. Surprisingly, shifting more precipitation to the early growing season can advance plant development, increase the dominance of drought-tolerant forbs, and thus compensate for the negative impacts of middle growing-season water stress on ecosystem C cycling, leading to a neutral change in grassland C sink. Our findings indicate that greater precipitation and plant development in spring could act as a crucial mechanism, maintaining plant growth and stabilizing ecosystem C sink. This underscores the urgent need to incorporate precipitation seasonality into Earth system models, which is crucial for improving projections of terrestrial C cycling and sequestration under future climate change scenarios.

13.
Front Plant Sci ; 15: 1428011, 2024.
Article de Anglais | MEDLINE | ID: mdl-39301157

RÉSUMÉ

Introduction: Pinus tabuliformis as a crucial afforestation species in semi-arid regions, faces issues such as the reduction of plantations. Calcium plays a significant role in alleviating drought stress and promoting nutrient uptake in plants. Methods: Utilizing a pot experiment approach, seedlings were treated with exogenous calcium at five concentrations (0, 50, 100, 200, and 400 mg•kg-1). The nutrient content of the plants and soil was measured, and their ecological stoichiometric characteristics and internal stability were analyzed. This was followed by a series of related studies. Results: As the concentration of calcium increases, the contents of carbon, nitrogen, phosphorus, and potassium in various organs and the whole plant exhibit a trend of first increasing and then decreasing, peaking at calcium treatment of 50-100 mg•kg-1. Concurrently, the calcium concentration in plant organs and the entire plant gradually increases with the availability of calcium in the soil. The addition of exogenous calcium has a certain impact on the ecological stoichiometric ratios (C:N, C:P, N:P) of Pinus tabuliformis seedlings' leaves, stems, roots, and the whole plant, exhibiting distinct variation characteristics. At calcium concentrations of 50-100 mg•kg-1, the ratios of C:N and C:P are relatively lower. Under calcium concentrations of 0, 50, and 100 mg•kg-1, soil calcium shows a positive correlation with the total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), and calcium contents in leaves, stems, roots, and the entire plant. However, at calcium concentrations of 200 and 400 mg•kg-1, soil calcium exhibits a significant positive correlation with the calcium content in leaves, stems, roots, and the entire plant, and a significant negative correlation with the total phosphorus, total nitrogen, total phosphorus, and total potassium contents. After the addition of exogenous calcium at different concentrations, most stoichiometric indices of various organs of Pinus tabuliformis seedlings demonstrate strong balance. Discussion: Calcium, as an essential structural component and second messenger, regulates the nutrient uptake and utilization in plants, influencing the stoichiometry. However, both low and high concentrations of calcium can be detrimental to plant growth by disrupting nutrient metabolism and internal structures. Consequently, there exists an optimal calcium concentration for nutrient absorption.

14.
Sci Rep ; 14(1): 22196, 2024 09 27.
Article de Anglais | MEDLINE | ID: mdl-39333669

RÉSUMÉ

We aimed to explore the mineralization characteristics of soil organic carbon(SOC) under different plant species in semi-arid grassland and provide basic soil carbon cycling data. Leymus chinensis, Stipa krylovii Roshev, Artemisia frigida, and Agrophorn cristam (L.) Gaertn were selected as the plant species. Incubation experiment were conducted on SOC mineralization in soil aggregates with particle sizes of > 2, 1-2, 0.25-1, and < 0.25 mm. The cumulative SOC mineralization amount in L. chinensis with a particle size > 2 mm was the highest, exceeding that of A. cristam (L.) Gaertn by approximately 136.14%. S. krylovii Roshev (70.73%), L. chinensis (58.05%), and A. frigida (33.73%) exhibited pronounced promotion effects on mineralization. The potential SOC mineralization of S. krylovii Roshev was the greatest among all species at the same soil particle size. The potential SOC mineralization was highest at a particle size of > 2 mm for all plant types. All plant types increased the SOC mineralization rate and cumulative mineralization in soils with large particle sizes, the mineralization reaction occurred more strongly. Organic carbon cumulative SOC mineralization rapidly increased in all tests during the first 20 days and gradually slowed thereafter.


Sujet(s)
Carbone , Prairie , Sol , Sol/composition chimique , Carbone/métabolisme , Taille de particule , Poaceae/métabolisme
15.
Jamba ; 16(1): 1647, 2024.
Article de Anglais | MEDLINE | ID: mdl-39229601

RÉSUMÉ

Climate change and recurring droughts-induced effects on health are becoming an increasingly main global, cultural and public health burden. The heaviest health burden leans on the fragile socio-economic systems among the remote agro-pastoral communities, living in the arid and semi-arid lands (ASALs). Previous studies underlined the indispensability of indigenous knowledge (IK) for resilience-driven disaster risk reduction (DRR) strategies. However, more attention has been drawn towards the necessity of IK in weather forecasts, with less emphasis on its indispensability to alleviate health burden associated with climate change and droughts. We explored the contextual application of IK-based adaptation and related complementarity aspects for culturally relevant and sustainable DRR strategies for the nomadic agro-pastoral communities in Lopur, Turkana, Kenya. Relying on a descriptive qualitative study in phenomenological approach, purposive sampling and focus group discussions with key community influencers, a thematic analysis was conducted for an in-depth understanding and interpretation of data patterns. The contextualised insights revealed the growing vulnerability as a result of the disconnect between modern interventions, IK and the newly adopted environmental degrading coping tactics. Policy-wise, the findings portrayed the necessity for cultural integration and incorporation of indigenous knowledge-based strategies and systems for reinforced information dissemination, accessibility and acceptability for droughts preparedness and response. Contribution: This study underlined the existing room for scientific exploration of the already existing indigenous knowledge-based solutions for food and water insecurity, towards improved resilience for the vulnerable communities experiencing inequitable climate change calamities in the ASALs.

16.
J Environ Manage ; 370: 122455, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39244924

RÉSUMÉ

Interception loss (IL) is an important process in the hydrological cycle within semi-arid forest ecosystems, directly affecting the amount of effective rainfall. However, the factors influencing IL during individual rainfall events remain to be quantified. This study collected rainfall, vegetation, and interception data during the 2022 and 2023 growing seasons in a typical black locust forest within the Zhifanggou watershed. It employed the Random Forest Regression (RFR) and back-propagation neural network (BPNN) methods to quantitatively evaluate the contribution rates of various factors to the IL and interception loss percentage (ILP). The IL among the 48 effective rainfall events was 172.05 mm, accounting for 19.54% of the rainfall amount. IL and ILP increased as the distance from the trunk decreased. During all rainfall events, both IL and ILP were significantly negatively correlated with the leaf area index (LAI) and canopy cover (CC); IL is significantly positively correlated with total rainfall (TR) and rainfall intensity (RI), while ILP is significantly negatively correlated with TR, RI, and rainfall duration (RD). The BPNN and RFR results indicated that rainfall, canopy, and tree characteristics contributed 43.06%, 44.79%, and 12.15% to IL, respectively, and 57.27%, 34.09%, and 8.63% to ILP, respectively. TR, CC, and LAI represented the primary influencing factors. Rainfall and canopy characteristics were the main factors affecting IL (ILP). As rainfall event magnitude increases, canopy contributions to IL and ILP decrease. In semi-arid areas, managing forest canopies to control IL helps address water imbalances in ecosystems.

17.
Front Plant Sci ; 15: 1441567, 2024.
Article de Anglais | MEDLINE | ID: mdl-39290726

RÉSUMÉ

The ecological environment of wetlands in semi-arid regions has deteriorated, and vegetation succession has accelerated due to climate warming-induced aridification and human interference. The nutrient acquisition strategies and biomass allocation patterns reflect plant growth strategies in response to environmental changes. However, the impact of nutrient acquisition strategies on biomass allocation in successional vegetation remains unclear. We investigated 87 plant communities from 13 wetland sites in the semi-arid upper Yellow River basin. These communities were divided into three successional sequences: the herbaceous community (HC), the herbaceous-shrub mixed community (HSC), and the shrub community (SC). The nutrient composition of stems and leaves, as well as the biomass distribution above and belowground, were investigated. Results revealed that aboveground biomass increased with succession while belowground biomass decreased. Specifically, SC exhibited the highest stem biomass of 1,194.53 g m-2, while HC had the highest belowground biomass of 2,054.37 g m-2. Additionally, significant positive correlations were observed between leaf and stem biomasses in both HC and SC. The nitrogen (N) and phosphorus (P) contents within aboveground parts displayed an evident upward trend along the succession sequence. The highest N and P contents were found in SC, followed by HSC, and the lowest in HC. Stem N was negatively correlated with stem, leaf, and belowground biomass but positively correlated with root-shoot ratio. Leaf P displayed positive correlations with aboveground biomass while showing negative correlations with belowground biomass and root-shoot ratio. The ratios of C:N, C:P, and N:P in stem and leaf exhibited positive correlations with belowground biomass. The random forest model further demonstrated that stem N and leaf P exerted significant effects on aboveground biomass, while leaf P, stem N and P, and leaf C:P ratio had significant effects on belowground components. Additionally, the root-shoot ratio was significantly influenced by leaf P, leaf C:P ratio, and stem N, P, and C:P ratio. Therefore, the aboveground and belowground biomasses exhibited asynchronism across successional sequences, while plant nutrient acquisition strategies, involving nutrient levels and stoichiometric ratios, determined the biomass allocation pattern. This study offers valuable insights for assessing vegetation adaptability and formulating restoration plans in the semi-arid upper Yellow River basin.

18.
Heliyon ; 10(17): e36969, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39281625

RÉSUMÉ

In view of the changing climate and growing global food demand, efficient water management is crucial for sustainable agriculture. Accurate measurement of evapotranspiration is essential for determining crop water demand and consequently for designing and managing irrigation systems. This study, conducted at Melkassa Agricultural Research Center in Ethiopia, utilized a drainage lysimeter to investigate the water requirements and crop coefficients of the Kingbird wheat variety during the December to March cropping season in 2021/22 and 2022/23. The experiment involved planting Kingbird wheat both inside and outside the lysimeter and irrigating using a watering can. Neutron probe measurement monitored the water balance in the soil. The study determined an average crop evapotranspiration of 427.28 mm and a reference evapotranspiration of 471.30 mm indicating a water requirement of 4273 m³ to fully grow wheat on a hectare of land. The derived average crop coefficient values were 0.43, 0.93, 1.15, and 0.30 for the initial, mid-season, and end growth stages, respectively. Furthermore, a fifth-order polynomial function was developed to predict crop coefficient values based on days after sowing. The findings provide valuable insights for enhancing the design and management of irrigated wheat production in the region. The specific crop coefficient values determined for different growth stages are crucial for optimizing irrigation scheduling and improving water-use efficiency, contributing to sustainable wheat production in semi-arid environment.

19.
Mol Ecol ; : e17501, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39175265

RÉSUMÉ

Microbial and microeukaryotic communities are extremely abundant and diverse in soil habitats where they play critical roles in ecosystem functioning and services that are essential to soil health. Soil biodiversity is influenced by above-ground (vegetation) and below-ground factors (soil properties), which together create habitat-specific conditions. However, the compound effects of vegetation and soil properties on soil communities are less studied or often focused on one component of the soil biota. Here, we integrate metabarcoding (16S and 18S rRNA genes) and nematode morphology to assess the effects of habitat and soil properties shaping microbial and microeukaryotic communities as well as nematode-associated microbiomes. We show that both vegetation and soil properties (soil bulk density) were major factors structuring microbial and microeukaryotic communities in semi-arid soil habitats. Despite having lower nutrients and lower pH, denser soils displayed significantly higher alpha diversity than less dense soils across datasets. Nematode-associated microbiomes have lower microbial diversity, strongly differ from soil microbes and are more likely to respond to microscale variations among samples than to vegetation or soil bulk density. Consequently, different nematode lineages and trophic groups are likely to display similar associated microbiomes when sharing the same microhabitat. Different microbiome taxa were enriched within specific nematode lineages (e.g. Mycobacterium, Candidatus Cardinium) highlighting potentially new species-specific associations that may confer benefits to their soil nematode hosts. Our findings highlight the importance of exploring above- and below-ground effects to assess community structure in terrestrial habitats, and how fine-scale analyses are critical for understanding patterns of host-associated microbiomes.

20.
Glob Chang Biol ; 30(8): e17483, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39171768

RÉSUMÉ

The role of plant biodiversity in stabilizing ecosystem multifunctionality has been extensively studied; however, the impact of soil biota biodiversity on ecosystem multifunctional stability, particularly under multiple environmental changes, remains unexplored. By conducting an experiment with environmental changes (adding water and nitrogen to a long-term grazing experiment) and an experiment without environmental changes (an undisturbed site) in semi-arid grasslands, our research revealed that environmental changes-induced changes in temporal stability of both above- and belowground multifunctionality were mainly impacted by plant and soil biota asynchrony, rather than by species diversity. Furthermore, changes in temporal stability of above- and belowground multifunctionality, under both experiments with and without environmental changes, were mainly associated with plant and soil biota asynchrony, respectively, suggesting that the temporal asynchrony of plant and soil biota has independent and non-substitutable effects on multifunctional stability. Our findings emphasize the importance of considering both above- and belowground biodiversity or functions when evaluating the stabilizing effects of biodiversity on ecosystem functions.


Sujet(s)
Biodiversité , Prairie , Plantes , Sol/composition chimique , Écosystème , Microbiologie du sol , Biote , Azote/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE