Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 158
Filtrer
1.
Environ Pollut ; 358: 124489, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38960119

RÉSUMÉ

The efficacy of RemBind® 300 to immobilize per- and polyfluoroalkyl substances (PFAS) in aqueous film forming foam (AFFF)-impacted soil (∑28 PFAS 1280-8130 ng g-1; n = 8) was assessed using leachability (ASLP) and bioaccumulation (Eisenia fetida) endpoints as the measure of efficacy. In unamended soil, ∑28 PFAS leachability ranged from 26.0 to 235 µg l-1, however, following the addition of 5% w/w RemBind® 300, ∑28 PFAS leachability was reduced by > 99%. Following exposure of E. fetida to unamended soil, ∑28 PFAS bioaccumulation ranged from 18,660-241,910 ng g-1 DW with PFOS accumulating to the greatest extent (15,150-212,120 ng g-1 DW). Biota soil accumulation factors (BSAF) were significantly (p < 0.05) higher for perfluoroalkyl sulfonic acids (PFSA; 13.2-50.9) compared to perfluoroalkyl carboxylic acids (PFCA; 1.2-12.7) while for individual PFSA, mean BSAF increased for C4 to C6 compounds (PFBS: 42.6; PFPeS: 52.7; PFHxS: 62.4). In contrast, when E. fetida were exposed to soil amended with 5% w/w RemBind® 300, significantly lower PFAS bioaccumulation occurred (∑28 PFAS: 339-3397 ng g-1 DW) with PFOS accumulation 23-246 fold lower compared to unamended soil. These results highlight the potential of soil amendments for reducing PFAS mobility and bioavailability, offering an immobilization-based risk management approach for AFFF-impacted soil.

2.
Environ Res ; 259: 119459, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38942257

RÉSUMÉ

In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.

3.
Sci Total Environ ; 945: 174033, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38885708

RÉSUMÉ

Disturbed soils, including manufactured topsoils, often lack physical and chemical properties conducive to vegetation establishment. As a result, efforts to stabilize disturbed soils with vegetation are susceptible to failure. Urban organic waste products such as wood mulch, composted leaf and yard waste, and biosolids are widely distributed as organic amendments that enhance sustainability and plant establishment. Correct use can be determined by examining soil properties such as pH; the concentration of soluble salts (SS); and plant available nutrients - particularly N, C and P; as well as root and shoot growth. This research examined the effects of three typical organic amendments on fertility, establishment, and nutrient loss. A manufactured topsoil was used as the base soil for all treatments, including a control unamended soil (CUT), and soil amended with either mulch (MAT), composted leaf and yard waste (LAT), or biosolids (BAT). A 2 % organic matter concentration increase was sought but not achieved due to difficulty in reproducing lab results at a larger scale. Results showed that LAT improved soil fertility, particularly N-P-K concentrations while maintaining a good C:N ratio, pH, and SS concentration. BAT was the most effective at enhancing shoot growth but results suggest that improved growth rates could result in increased maintenance. Additionally, biosolids were an excellent source of nutrients, especially N-P-K and S, but diminished root growth and N leachate losses indicate that N was applied in excess of turfgrass requirements. Therefore, biosolids could be used as fertilizer, subject to recommended rates for turfgrass establishment to prevent poor root growth and waterborne N pollution. To ensure establishment efforts are successful, MAT is not recommended without a supplemental source of soluble N. Altogether, study results and conclusions could inform others seeking to improve specifications for disturbed soil where turfgrass establishment is needed to stabilize soil.


Sujet(s)
Sol , Sol/composition chimique , Engrais , Azote/analyse , Nutriments/analyse , Phosphore/analyse , Compostage/méthodes
4.
Toxics ; 12(5)2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38787113

RÉSUMÉ

In small populations and scattered communities, wastewater treatment through vegetation filters (VFs), a nature-based solution, has proved to be feasible, especially for nutrient and organic matter removal. However, the presence of pharmaceuticals in wastewater and their potential to infiltrate through the vadose zone and reach groundwater is a drawback in the evaluation of VF performances. Soil amended with readily labile carbon sources, such as woodchips, enhances microbial activity and sorption processes, which could improve pharmaceutical attenuation in VFs. The present study aims to assess if woodchip amendments to a VF's soil are able to abate concentrations of selected pharmaceuticals in the infiltrating water by quantitatively describing the occurring processes through reactive transport modelling. Thus, a column experiment using soil collected from an operating VF and poplar woodchips was conducted, alongside a column containing only soil used as reference. The pharmaceuticals acetaminophen, naproxen, atenolol, caffeine, carbamazepine, ketoprofen and sulfamethoxazole were applied daily to the column inlet, mimicking a real irrigation pattern and periodically measured in the effluent. Ketoprofen was the only injected pharmaceutical that reached the column outlet of both systems within the experimental timeframe. The absence of acetaminophen, atenolol, caffeine, carbamazepine, naproxen and sulfamethoxazole in both column outlets indicates that they were attenuated even without woodchips. However, the presence of 10,11-epoxy carbamazepine and atenolol acid as transformation products (TPs) suggests that incomplete degradation also occurs and that the effect of the amendment on the infiltration of TPs is compound-specific. Modelling allowed us to generate breakthrough curves of ketoprofen in both columns and to obtain transport parameters during infiltration. Woodchip-amended columns exhibited Kd and µw values from one to two orders of magnitude higher compared to soil column. This augmentation of sorption and biodegradation processes significantly enhanced the removal of ketoprofen to over 96%.

5.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38654167

RÉSUMÉ

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Sujet(s)
Azospirillum brasilense , Charbon de bois , Sol , Triticum , Triticum/métabolisme , Azospirillum brasilense/physiologie , Sol/composition chimique , Déshydratation , Sécheresses
6.
Sci Total Environ ; 923: 171332, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38447716

RÉSUMÉ

The synergy between bacteria and fungi is a key determinant of soil health and have a positive effect on plant development under drought conditions, with the potentially enhancing the sustainability of amending soil with natural materials. However, identifying how soil amendments influence plant growth is often difficult due to the complexity of microorganisms and their links with different soil amendment types and environmental factors. To address this, we conducted a field experiment to examine the impact of soil amendments (biochar, Bacillus mucilaginosus, Bacillus subtilis and super absorbent polymer) on plant growth. We also assessed variations in microbial community, links between fungi and bacteria, and soil available nutrients, while exploring how the synergistic effects between fungus and bacteria influenced the response of soil amendments to plant growth. This study revealed that soil amendments reduced soil bacterial diversity but increased the proportion of the family Enterobacteriaceae, Nitrosomonadaceae, and also increased soil fungal diversity and the proportion of the sum of the family Lasiosphaeriaceae, Chaetomiaceae, Pleosporaceae. Changes in soil microbial communities lead to increase the complexity of microbial co-occurrence networks. Furthermore, this heightened network complexity enhanced the synergy of soil bacteria and fungi, supporting bacterial functions related to soil nutrient cycling, such as metabolic functions and genetic, environmental, and cellular processes. Hence, the BC and BS had 3.0-fold and 0.5-fold greater root length densities than CK and apple tree shoot growth were increased by 62.14 %,50.53 % relative to CK, respectively. In sum, our results suggest that the synergistic effect of bacteria and fungi impacted apple tree growth indirectly by modulating soil nutrient cycling. These findings offer a new strategy for enhancing the quality of arable land in arid and semi-arid regions.


Sujet(s)
Microbiote , Sol , Bactéries/métabolisme , Nutriments , Champignons/métabolisme , Microbiologie du sol
7.
Microorganisms ; 12(2)2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-38399698

RÉSUMÉ

Soil amendments may enhance crop yield and quality by increasing soil nutrient levels and improving nutrient absorption efficiency, potentially through beneficial microbial interactions. In this work, the effects of amending soil with straw-based carbon substrate (SCS), a novel biochar material, on soil nutrients, soil microbial communities, and maize yield were compared with those of soil amendment with conventional straw. The diversity and abundance of soil bacterial and fungal communities were significantly influenced by both the maize growth period and the treatment used. Regression analysis of microbial community variation indicated that Rhizobiales, Saccharimonadales, and Eurotiales were the bacterial and fungal taxa that exhibited a positive response to SCS amendment during the growth stages of maize. Members of these taxa break down organic matter to release nutrients that promote plant growth and yield. In the seedling and vegetative stages of maize growth, the abundance of Rhizobiales is positively correlated with the total nitrogen (TN) content in the soil. During the tasseling and physiological maturity stages of corn, the abundance of Saccharimonadales and Eurotiales is positively correlated with the content of total carbon (TC), total phosphorus (TP), and available phosphorus (AP) in the soil. The results suggest that specific beneficial microorganisms are recruited at different stages of maize growth to supply the nutrients required at each stage. This targeted recruitment strategy optimizes the availability of nutrients to plants and ultimately leads to higher yields. The identification of these key beneficial microorganisms may provide a theoretical basis for the targeted improvement of crop yield and soil quality. This study demonstrates that SCS amendment enhances soil nutrient content and crop yield compared with conventional straw incorporation and sheds light on the response of soil microorganisms to SCS amendment, providing valuable insights for the future implementation of this material.

8.
BMC Plant Biol ; 24(1): 139, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38413916

RÉSUMÉ

Drought stress poses a significant challenge to maize production, leading to substantial harm to crop growth and yield due to the induction of oxidative stress. Deashed biochar (DAB) in combination with carboxymethyl cellulose (CMC) presents an effective approach for addressing this problem. DAB improves soil structure by increasing porosity and water retention and enhancing plant nutrient utilization efficiency. The CMC provides advantages to plants by enhancing soil water retention, improving soil structure, and increasing moisture availability to the plant roots. The present study was conducted to investigate the effects of DAB and CMC amendments on maize under field capacity (70 FC) and drought stress. Six different treatments were implemented in this study, namely 0 DAB + 0CMC, 25 CMC, 0.5 DAB, 0.5 DAB + 25 CMC, 1 DAB, and 1 DAB + 25 CMC, each with six replications, and they were arranged according to a completely randomized design. Results showed that 1 DAB + 25 CMC caused significant enhancement in maize shoot fresh weight (24.53%), shoot dry weight (38.47%), shoot length (32.23%), root fresh weight (19.03%), root dry weight (87.50%) and root length (69.80%) over control under drought stress. A substantial increase in maize chlorophyll a (40.26%), chlorophyll b (26.92%), total chlorophyll (30.56%), photosynthetic rate (21.35%), transpiration rate (32.61%), and stomatal conductance (91.57%) under drought stress showed the efficiency of 1 DAB + 25 CMC treatment compared to the control. The enhancement in N, P, and K concentrations in both the root and shoot validated the effectiveness of the performance of the 1 DAB + 25 CMC treatment when compared to the control group under drought stress. In conclusion, it is recommended that the application of 1 DAB + 25 CMC serves as a beneficial amendment for alleviating drought stress in maize.


Sujet(s)
Charbon de bois , Zea mays , Carboxyméthylcellulose de sodium/pharmacologie , Chlorophylle A , Sécheresses , Sol/composition chimique , Eau
9.
Environ Geochem Health ; 46(2): 36, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38227076

RÉSUMÉ

Urban agriculture should be promoted as long as the food produced is safe for consumption. Located in the metropolitan region of São Paulo-Brazil, Santo André has intense industrial activities and more recently an increasing stimulus to urban gardening. One of the potential risks associated to this activity is the presence of potentially toxic elements (PTEs). In this study, the concentration of PTEs (As, Ba, Cd, Co, Cu, Cr, Ni, Mo, Pb, Sb, Se, V and Zn) was evaluated by soil (n = 85) and soil amendments (n = 19) in urban gardens from this municipality. Only barium was above regulatory limits in agricultural soil ranging from 20 to 112 mg kg-1. Geochemical indexes (Igeo, Cf and Er) revealed moderate to severe pollution for As, Ba, Cr, Cu, Pb Se and Zn, especialy in Capuava petrochemical complex gardens. A multivariate statistical approach discriminated Capuava gardens from the others and correlated As, Cr and V as main factors of pollution. However, carcinogenic and non-carcinogenic risks were below the acceptable range for regulatory purposes of 10-6-10-4 for adults. Soil amendments were identified as a possible source of contamination for Ba, Zn and Pb which ranged from 37 to 4137 mg kg-1, 20 to 701 mg kg-1 and 0.7 to 73 mg kg-1, respectively. The results also indicated the presence of six pathogenic bacteria in these amendments. Besides that, the occurrence of antimicrobial resistance for Shigella, Enterobacter and Citrobacter isolates suggests that soil management practices improvement is necessary.


Sujet(s)
Jardinage , Jardins , Adulte , Humains , Brésil , Plomb , Sol
10.
Int J Phytoremediation ; 26(4): 504-523, 2024.
Article de Anglais | MEDLINE | ID: mdl-37667464

RÉSUMÉ

Ethylenediamine-N,N'-disuccinic acid (EDDS) has been studied extensively for its potential use as an amendment in agriculture due to its numerous beneficial properties. The widespread usage of microplastics (MPs) poses a growing threat to plant growth. This study investigated the effects of Polystyrene MPs (PSMPs) and EDDS on soil pH, EC, organic matter (OM), available nutrients, and maize (Zea mays L.) growth in a calcareous soil. Results showed that both PS and EDDS had significant effects on soil pH, with higher concentrations leading to a decrease in pH. PSMPs negatively impacted soil health by increasing EC and decreasing OM, nitrogen (N), phosphorus (P), and potassium (K). EDDS had potential applications in soil remediation and phytoremediation by decreasing EC and increasing N, P, and K. The interaction between EDDS and PSMPs suggests that their effects on soil pH may be modulated by each other. The study highlights the potential negative impacts of high concentrations of PS on soil health and the potential benefits of using EDDS at lower concentrations in soil remediation and phytoremediation. However, further research is needed to understand the mechanisms and environmental impacts of EDDS and the combined effects of EDDS and PSMPs on soil properties and plant growth.


Plastic pollution is a serious environmental issue affecting soil health worldwide, and this study sheds new light on the potential benefits of using EDDS at lower concentrations for soil remediation and phytoremediation. The findings reveal that EDDS can mitigate the negative impacts of PS on soil health and maize growth by improving nutrient availability, enhancing soil structure, and water retention. The study is the first to investigate the interactive effects of EDDS and PS on maize growth parameters across different levels of PS contamination. The results provide critical insights into the mechanisms underlying the mitigating effects of EDDS and highlight the need for further research on the environmental impacts of plastic pollution and effective management practices. Overall, this study presents a novel approach to mitigating the negative impacts of plastic pollution on soil health and crop production, with important implications for sustainable agriculture and environmental preservation.This study shows that EDDS, at lower concentrations, can mitigate the negative impacts of PSMPS on soil health and maize growth. It is the first to examine interactions between EDDS and PSMPS across varying levels of contamination. The results point to the potential benefits of EDDS as a soil amendment to remediate MPs pollution, revealing insights into its mechanisms of action. Findings suggest possible solutions for MPs pollution in agriculture but call for more research to balance environmental goals.


Sujet(s)
Polluants du sol , Sol , Sol/composition chimique , Polystyrènes/pharmacologie , Dépollution biologique de l'environnement , Matières plastiques/pharmacologie , Agriculture , Zea mays , Polluants du sol/analyse
11.
Environ Sci Pollut Res Int ; 31(1): 1562-1575, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38047999

RÉSUMÉ

Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg-1 soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.


Sujet(s)
Arsenic , Charbon de bois , Lactoyl glutathione lyase , Oryza , Antioxydants/métabolisme , Oryza/métabolisme , Substances humiques , Arsenic/toxicité , Stress oxydatif , Acide ascorbique/pharmacologie , Glutathion/métabolisme , Lactoyl glutathione lyase/métabolisme , Lactoyl glutathione lyase/pharmacologie , Peroxydation lipidique , Proline/métabolisme , Eau , Plant
12.
Trends Plant Sci ; 29(4): 482-494, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-37977879

RÉSUMÉ

Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.


Sujet(s)
Microbiote , Rhizosphère , Microbiologie du sol , Plantes/génétique , Sol , Sécurité alimentaire , Racines de plante
13.
J Hazard Mater ; 465: 133109, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38071771

RÉSUMÉ

Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.


Sujet(s)
Assainissement et restauration de l'environnement , Métaux lourds , Polluants du sol , Cadmium/analyse , Sol , Polluants du sol/analyse , Métaux lourds/analyse , Concentration en ions d'hydrogène
14.
J Food Prot ; 87(3): 100210, 2024 03.
Article de Anglais | MEDLINE | ID: mdl-38158047

RÉSUMÉ

Antimicrobial properties of biochar have been attributed to its ability to inactivate foodborne pathogens in soil, to varying degrees. High concentrations of biochar have reduced E. coli O157:H7 in soil and dairy manure compost, based on alkaline pH. Preliminary studies evaluating 31 different biochars determined that two slow pyrolysis biochars (paper biochar and walnut hull cyclone biochar) were the most effective at inactivating E. coli in soil. A study was conducted to determine the lowest percentages of paper and walnut hull cyclone biochars needed to reduce E. coli O157:H7 in soil. A model soil was adjusted to 17.75% moisture, and the two types of biochar were added at concentrations of 1.0, 1.5, 2.0, 2.5, 3.5, 4.5, 5.5, and 6.5%. Nontoxigenic E. coli O157:H7 were inoculated into soil at 6.84 log CFU/g and stored for up to 6 weeks at 21°C. Mean E. coli O157:H7 counts were 6.01-6.86 log CFU/g at all weeks between 1 and 6 in soil-only positive control samples. Populations in all soil amended with 1.0 and 1.5% of either type of biochar (as well as 2.0% of the walnut hull biochar) resulted in ≤0.68 log reductions at week 6, when compared with positive controls. All other concentrations (i.e., ≥2.0% paper and ≥2.5% walnut hull) inactivated ≥2.7 log at all weeks between 1 and 6 (p < 0.05). At the end of 6 weeks, E. coli O157:H7 declined by 2.84 log in 2.0% paper biochar samples, while concentrations of between 2.5 and 6.5% paper biochar completely inactivated E. coli O157:H7, as determined by spiral plating, at weeks 5 and 6. In contrast, 2.0% walnut hull biochar lowered populations by only 0.38 log at week 6, although 2.5-6.5% concentrations of walnut hull biochar resulted in complete inactivation at all weeks between 3 and 6, as assessed by spiral plating. In summary, ≥2.5% paper or walnut hull biochar reduced ≥5.0 log of E. coli O157:H7 during the 6-week storage period, which we attribute to high soil alkalinity. Amended at a 2.5% concentration, the pH of soil with paper or walnut hull biochar was 10.67 and 10.06, respectively. Results from this study may assist growers in the use of alkaline biochar for inactivating E. coli O157:H7 in soil.


Sujet(s)
Charbon de bois , Tempêtes cycloniques , Escherichia coli O157 , Juglans , Sol , Pyrolyse , Numération de colonies microbiennes , Microbiologie alimentaire
15.
Microorganisms ; 11(11)2023 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-38004775

RÉSUMÉ

Rhizosphere interactions are an understudied component of citrus production. This is even more important in Florida flatwood soils, which pose significant challenges in achieving sustainable and effective fruit production due to low natural fertility and organic matter. Citrus growers apply soil amendments, including oak mulch, to ameliorate their soil conditions. Thus, the aim of this research was to evaluate the effects of oak mulch on citrus nutrient uptake, soil characteristics, and rhizosphere composition. The plant material consisted of 'Valencia' sweet orange (Citrus × sinensis) trees grafted on 'US-812' (C. reticulata × C. trifoliata) rootstock. The experiment consisted of two treatments, which included trees treated with oak mulch (300 kg of mulch per plot) and a control. The soil and leaf nutrient contents, soil pH, cation exchange capacity, moisture, temperature, and rhizosphere bacterial compositions were examined over the course of one year (spring and fall 2021). During the spring samplings, the citrus trees treated with oak mulch resulted in significantly greater soil Zn and Mn contents, greater soil moisture, and greater rhizosphere bacterial diversity compared to the control, while during the fall samplings, only a greater soil moisture content was observed in the treated trees. The soil Zn and Mn content detected during the spring samplings correlated with the significant increases in the diversity of the rhizosphere bacterial community composition. Similarly, the reduced rates of leaching and evaporation (at the soil surface) of oak mulch applied to Florida sandy soils likely played a large role in the significant increase in moisture and nutrient retention.

16.
J Agric Food Chem ; 71(41): 15407-15416, 2023 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-37796632

RÉSUMÉ

Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.


Sujet(s)
Métabolomique , Triticum , Chromatographie en phase liquide à haute performance/méthodes , Métabolomique/méthodes , Spectrométrie de masse/méthodes
17.
Huan Jing Ke Xue ; 44(10): 5649-5656, 2023 Oct 08.
Article de Chinois | MEDLINE | ID: mdl-37827781

RÉSUMÉ

The supplementation of soil amendments may not only improve the soil physical and chemical properties but also lead to the accumulation of heavy metals in soil. This experiment included six treatments:control (CK), organic manure (OM), polyacrylamide+organic manure (PAM+OM), straw mulching+organic manure (SM+OM), buried straw+organic manure (BS+OM), and bio-organic manure+organic manure (BM+OM) to explore the effects of different soil amendments on heavy metals and soil enzyme activities in coastal saline land and the relationship between them. The results revealed that compared with that in the CK treatment, the contents of soil Cr, Cu, Ni, and Pb exhibited an upward trend after the supplementation of soil amendments, among which the SM+OM and PAM+OM treatments had the most significant effects on the contents of soil Cr and Cu, respectively, whereas the BM+OM treatment had the most significant effects on the contents of soil Ni and Pb. Compared with those in the CK treatment, the activities of soil invertase and urease increased significantly following supplementation of soil amendments, and the BM+OM treatment had the best effect. The alkaline phosphatase activity exhibited a slightly upward trend after the supplementation of soil amendments, whereas the catalase activity did not change significantly. The redundancy analysis revealed that the first two axes cumulatively accounted for 70.3% of the variability in enzyme activities, and the importance of single soil heavy metals on soil enzyme activity was as follows:Ni>Cu>Cr>Pb.


Sujet(s)
Métaux lourds , Polluants du sol , Sol/composition chimique , Fumier/analyse , Plomb/analyse , Polluants du sol/analyse , Métaux lourds/analyse , Compléments alimentaires/analyse
18.
Int J Biol Macromol ; 253(Pt 5): 127229, 2023 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-37802458

RÉSUMÉ

The main challenge facing agriculture today is water scarcity. At present, agriculture consumes around 70 % of the planet's freshwater, much of which is lost through evaporation, leaching and runoff. This wastage, combined with the increased frequency and severity of droughts linked to climate change, is having a considerable negative impact on crops. As a result, the food security of people living in regions with limited water resources is threatened. In this regard, efficient water management using water-saving materials and soil additives such as superabsorbent polymers (SAPs) are recognized as an effective strategy to boost water use efficiency by plants and improve agricultural productivity. The present study fits with this strategy and aims to investigate the effect of new sodium alginate-based hydrogel-treated sandy loam soil on seed emergence and growth of tomatoes as a crop model under different water-deficit stress levels. A set of pot experiments was conducted in a greenhouse chamber using sandy loam soil amended with two levels of hydrogel (0.1 % and 0.5 % by weight) along with untreated control, all under water-deficit stress at three levels: 30 % of the daily amount of required irrigation water (DARW) for different growing cycles (severe stress), 70 % DARW (mild stress), and 100 % DARW (normal irrigation conditions). The germination test showed the absence of phytotoxicity of the developed hydrogel and confirmed its suitability in protecting seedlings from drought stress. Greenhouse experiment results demonstrated that water stress and levels of applied hydrogel significantly (P < 0.05) affected plant growth parameters such as plant height, stem diameter, number of leaves, chlorophyll content, fresh weight, and dry weight compared with the treatments without SAPs. The developed sodium alginate-based SAPs showed relevant agronomical benefits under drought stress by retaining more water and nutrients, thus it had the potential to be used in agriculture for better water management along with significant environmental benefits.


Sujet(s)
Solanum lycopersicum , Humains , Hydrogels/pharmacologie , Alginates/pharmacologie , Agriculture , Sol , Sécheresses
19.
Bioresour Technol ; 389: 129782, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37742815

RÉSUMÉ

Biochar, a solid carbonaceous substance synthesized from the thermochemical degradation of biomass, holds significant potential in addressing global challenges such as soil degradation, environmental pollution, and climate change. Its potential as a carbon sequestration agent, together with its versatile applications in soil amendments, pollutant adsorption, and biofuel production, has garnered attention. On the other hand, microalgae, with their outstanding photosynthetic efficiency, adaptability, and ability to accumulate carbohydrates and lipids, have demonstrated potential as emerging feedstock for biochar production. However, despite the significant potential of microalgal biochar, our current understanding of its various aspects, such as the influence of parameters, chemical modifications, and applications, remains limited. Therefore, this review aims to provide a comprehensive analysis of microalgae-based biochar, covering topics such as production techniques, pollutant removal, catalytic applications, soil amendments, and synthesis of carbon quantum dots to bridge the existing knowledge gap in this field.

20.
J Hazard Mater ; 459: 132217, 2023 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-37544173

RÉSUMÉ

In wastewater treatment using Vegetation Filters (VFs), natural processes reduce contaminants present in water although some of them can reach the environment. In this study, 39 contaminants of emerging concern (CECs) are evaluated in a pilot VF under different operating conditions during almost four years. The use of woodchip amendments and the change from surface irrigation through furrows to drip irrigation (and from weekly to daily water application) provide CEC concentration reductions in the water infiltrating through the vadose zone. Biodegradation is the main process taking place and has been favoured mainly by woodchip soil amendments and the increased residence. Median attenuation percentages of the CECs most frequently detected with highest concentrations in applied wastewater vary between 52% and 100% at the end of the study (at 45 cm depth). Among targeted CECs, caffeine, and its transformation product paraxanthine are the most attenuated. Flecainide and venlafaxine show a persistent behaviour. However, their leaching concentrations are very low (< 31 ng/L). Concerning the underlying aquifer, the groundwater quality in terms of CEC concentrations is conditioned by the surrounding area rather than the operation of the VF. Levels in groundwater are always below those in wastewater and infiltrating water.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE