Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 128
Filtrer
1.
Redox Rep ; 29(1): 2382943, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39092597

RÉSUMÉ

OBJECTIVES: Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss. METHODS: We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes. RESULTS: Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis. DISCUSSION: Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.


Sujet(s)
Facteur inducteur d'apoptose , Apoptose , Cytochromes c , Hyperglycémie , Souris de lignée C57BL , Mitochondries , Stress oxydatif , Péricytes , Protéines proto-oncogènes c-bcl-2 , Espèces réactives de l'oxygène , Strie vasculaire , Animaux , Péricytes/métabolisme , Péricytes/effets des médicaments et des substances chimiques , Péricytes/anatomopathologie , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Souris , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , Cytochromes c/métabolisme , Facteur inducteur d'apoptose/métabolisme , Hyperglycémie/métabolisme , Protéines proto-oncogènes c-bcl-2/métabolisme , Mâle , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Cochlée/métabolisme , Cochlée/anatomopathologie
2.
Hear Res ; 451: 109091, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39067415

RÉSUMÉ

Sgms1 encodes sphingomyelin synthase 1, an enzyme in the sphingosine-1-phosphate signalling pathway, and was previously reported to underlie hearing impairment in the mouse. A new mouse allele, Sgms1tm1a, unexpectedly showed normal Auditory Brainstem Response thresholds. We found that the Sgms1tm1a mutation led to incomplete knockdown of transcript to 20 % of normal values, which was enough to support normal hearing. The Sgms1tm1b allele was generated by knocking out exon 7, leading to a complete lack of detectable transcript in the inner ear. Sgms1tm1b homozygotes showed largely normal auditory brainstem response thresholds at first, followed by progressive loss of sensitivity until they showed severe impairment at 6 months old. The endocochlear potential was consistently reduced in Sgms1tm1b mutants at 3, 4 and 8 weeks old, to around 80 mV compared with around 120 mV in control littermates. The stria vascularis showed a characteristic irregularity of marginal cell surfaces and patchy loss of Kcnq1 expression at their apical membrane, and expression analysis of the lateral wall suggested that marginal cells were the most likely initial site of dysfunction in the mutants. Finally, significant association of auditory thresholds with DNA markers within and close to the human SGMS1 gene were found in the 1958 Birth Cohort, suggesting that SGMS1 variants may play a role in the range of hearing abilities in the human population.

3.
Laryngoscope ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958129

RÉSUMÉ

OBJECTIVES: Despite otitis media and various disease processes being associated with endolymphatic hydrops (EH), an exact explanation of the pathophysiology has yet to be reported. This study aimed to investigate the changes in the cochlear lateral wall structures and their potential correlation with the presence and severity of cochlear EH in acute and chronic otitis media cases. The investigations were conducted in both chinchilla animal model and human temporal bone specimens. METHODS: We studied a total of 15 chinchilla and 25 human temporal bones from our collection, which were categorized into acute otitis media, chronic otitis media (COM), and control groups. Through quantitative analysis, we measured the area of cochlear lateral wall structures and observed the presence and the degree of EH using light microscopy. RESULTS: No significant changes were determined in the area of the spiral ligament (p > 0.05) across the species. However, a significant (p < 0.05) decrease in the mean area of the stria vascularis in the basal turn was identified in COM groups compared to controls of both species. Chinchilla model additionally exhibited pathology extending to the lower mid turn. A negative correlation was found between the mean strial area and the severity of EH in both the animal model and human samples. CONCLUSIONS: COM associated with significant changes in the stria vascularis that may lead to significant increase in the degree of EH. The presented animal model exhibited parallel findings with human samples, suggesting its viability as a valuable model for future studies. LEVEL OF EVIDENCE: N/A Laryngoscope, 2024.

4.
Hear Res ; 450: 109072, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38936171

RÉSUMÉ

There is controversy regarding the association and etiopathogenesis of diabetes mellitus (DM) and sensorineural hearing loss (SNHL). Some studies support that SNHL develops because of angiopathy and/or neuropathy caused by DM, but many of the findings have been inconsistent. This review aims to highlight a select number of studies that effectively describe the relationship between DM and SNHL, thus bringing more attention and awareness to this area of research. This review also describes animal models to understand better the mechanisms of DM contributing to SNHL in the inner ear. The goal of this narrative review is for researchers and healthcare professionals to further their understanding and investigation of the etiopathogenesis of both DM and SNHL, therefore leading to the development of effective treatments for diabetic patients displaying symptoms of SNHL.


Sujet(s)
Modèles animaux de maladie humaine , Surdité neurosensorielle , Surdité neurosensorielle/physiopathologie , Surdité neurosensorielle/psychologie , Animaux , Humains , Ouïe , Diabète/physiopathologie , Facteurs de risque
5.
Curr Neurovasc Res ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38918992

RÉSUMÉ

BACKGROUND: Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma. AIMS: This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets. METHODS: Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blottingin C57BL/6J mice. RESULTS: Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair neurotrophy and pericytes proliferation mediated by upstream VEGFR2. CONCLUSION: Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.

6.
Redox Biol ; 74: 103218, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38870779

RÉSUMÉ

The ABCC1 gene belongs to the ATP-binding cassette membrane transporter superfamily, which plays a crucial role in the efflux of various endogenous and exogenous substances. Mutations in ABCC1 can result in autosomal dominant hearing loss. However, the specific roles of ABCC1 in auditory function are not fully understood. Through immunofluorescence, we found that ABCC1 was expressed in microvascular endothelial cells (ECs) of the stria vascularis (StV) in the murine cochlea. Then, an Abcc1 knockout mouse model was established by using CRISPR/Cas9 technology to elucidate the role of ABCC1 in the inner ear. The ABR threshold did not significantly differ between WT and Abcc1-/- mice at any age studied. After noise exposure, the ABR thresholds of the WT and Abcc1-/- mice were significantly elevated. Interestingly, after 14 days of noise exposure, ABR thresholds largely returned to pre-exposure levels in WT mice but not in Abcc1-/- mice. Our subsequent experiments showed that microvascular integrity in the StV was compromised and that the number of outer hair cells and the number of ribbons were significantly decreased in the cochleae of Abcc1-/- mice post-exposure. Besides, the production of ROS and the accumulation of 4-HNE significantly increased. Furthermore, StV microvascular ECs were cultured to elucidate the role of ABCC1 in these cells under glucose oxidase challenge. Notably, 30 U/L glucose oxidase (GO) induced severe oxidative stress damage in Abcc1-/- cells. Compared with WT cells, the ROS and 4-HNE levels and the apoptotic rate were significantly elevated in Abcc1-/- cells. In addition, the reduced GSH/GSSG ratio was significantly decreased in Abcc1-/- cells after GO treatment. Taken together, Abcc1-/- mice are more susceptible to noise-induced hearing loss, possibly because ABCC1 knockdown compromises the GSH antioxidant system of StV ECs. The exogenous antioxidant N-acetylcysteine (NAC) may protect against oxidative damage in Abcc1-/- murine cochleae and ECs.


Sujet(s)
Antioxydants , Cochlée , Surdité due au bruit , Souris knockout , Protéines associées à la multirésistance aux médicaments , Stress oxydatif , Animaux , Souris , Protéines associées à la multirésistance aux médicaments/métabolisme , Protéines associées à la multirésistance aux médicaments/génétique , Cochlée/métabolisme , Cochlée/anatomopathologie , Surdité due au bruit/métabolisme , Surdité due au bruit/génétique , Antioxydants/métabolisme , Modèles animaux de maladie humaine , Espèces réactives de l'oxygène/métabolisme , Cellules endothéliales/métabolisme
7.
Int J Mol Sci ; 25(10)2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38791427

RÉSUMÉ

Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.


Sujet(s)
Vieillissement , Presbyacousie , Strie vasculaire , Humains , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Animaux , Presbyacousie/métabolisme , Presbyacousie/anatomopathologie , Presbyacousie/physiopathologie , Vieillissement/métabolisme , Vieillissement/physiologie , Cochlée/métabolisme , Cochlée/anatomopathologie , Perte d'audition/métabolisme , Perte d'audition/anatomopathologie
8.
Article de Anglais | MEDLINE | ID: mdl-38760547

RÉSUMÉ

INTRODUCTION: The stria vascularis (SV) may have a significant role in various otologic pathologies. Currently, researchers manually segment and analyze the stria vascularis to measure structural atrophy. Our group developed a tool, SVPath, that uses deep learning to extract and analyze the stria vascularis and its associated capillary bed from whole temporal bone histopathology slides (TBS). METHODS: This study used an internal dataset of 203 digitized hematoxylin and eosin-stained sections from a normal macaque ear and a separate external validation set of 10 sections from another normal macaque ear. SVPath employed deep learning methods YOLOv8 and nnUnet to detect and segment the SV features from TBS, respectively. The results from this process were analyzed with the SV Analysis Tool (SVAT) to measure SV capillaries and features related to SV morphology, including width, area, and cell count. Once the model was developed, both YOLOv8 and nnUnet were validated on external and internal datasets. RESULTS: YOLOv8 implementation achieved over 90% accuracy for cochlea and SV detection. nnUnet SV segmentation achieved a DICE score of 0.84-0.95; the capillary bed DICE score was 0.75-0.88. SVAT was applied to compare both the ears used in the study. There was no statistical difference in SV width, SV area, and average area of capillary between the two ears. There was a statistical difference between the two ears for the cell count per SV. CONCLUSION: The proposed method accurately and efficiently analyzes the SV from temporal histopathology bone slides, creating a platform for researchers to understand the function of the SV further.

9.
Cell Rep ; 43(4): 114083, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38602877

RÉSUMÉ

A common cause of deafness in humans is dysregulation of the endocochlear potential generated by the stria vascularis (SV). Thus, proper formation of the SV is critical for hearing. Using single-cell transcriptomics and a series of Shh signaling mutants, we discovered that the Shh receptor Patched1 (Ptch1) is essential for marginal cell (MC) differentiation and SV formation. Single-cell RNA sequencing analyses revealed that the cochlear roof epithelium is already specified into discrete domains with distinctive gene expression profiles at embryonic day 14, with Gsc as a marker gene of the MC lineage. Ptch1 deficiency leads to defective specification of MC precursors along the cochlear basal-apical regions. We demonstrated that elevated Gli2 levels impede MC differentiation through sustaining Otx2 expression and maintaining the progenitor state of MC precursors. Our results uncover an early specification of cochlear non-sensory epithelial cells and establish a crucial role of the Ptch1-Gli2 axis in regulating the development of SV.


Sujet(s)
Différenciation cellulaire , Cochlée , Récepteur Patched-1 , Strie vasculaire , Récepteur Patched-1/métabolisme , Récepteur Patched-1/génétique , Animaux , Souris , Strie vasculaire/métabolisme , Strie vasculaire/cytologie , Cochlée/métabolisme , Cochlée/embryologie , Cochlée/cytologie , Transduction du signal , Protéine à doigts de zinc Gli2/métabolisme , Protéine à doigts de zinc Gli2/génétique , Protéines Hedgehog/métabolisme , Protéines Hedgehog/génétique
10.
Hear Res ; 447: 109008, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636186

RÉSUMÉ

The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.


Sujet(s)
Vieillissement , Cortex auditif , Voies auditives , Cochlée , Stimulation électrique , Presbyacousie , Animaux , Mâle , Facteurs âges , Vieillissement/anatomopathologie , Vieillissement/métabolisme , Cortex auditif/métabolisme , Cortex auditif/physiopathologie , Voies auditives/physiopathologie , Voies auditives/métabolisme , Seuil auditif , Protéines de liaison au calcium , Choline O-acetyltransferase/métabolisme , Cochlée/innervation , Cochlée/métabolisme , Cochlée/physiopathologie , Cochlée/anatomopathologie , Modèles animaux de maladie humaine , Potentiels évoqués auditifs du tronc cérébral , Ouïe , Protéines des microfilaments , Microglie/métabolisme , Microglie/anatomopathologie , Neurones efférents/métabolisme , Noyau olivaire/métabolisme , Presbyacousie/physiopathologie , Presbyacousie/métabolisme , Presbyacousie/anatomopathologie , Rat Wistar , Facteur de nécrose tumorale alpha/métabolisme
11.
Acta Otolaryngol ; 144(2): 96-99, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38511591

RÉSUMÉ

BACKGROUND: Water homeostasis is essential for inner ear function. Several aquaporins (AQPs), which are water transport proteins in the cell or plasma membrane, have been reported in the lateral wall of the rat inner ear (cochlea). However, the presence of AQP-10, -11 and -12 has not been reported in the rat stria vascularis (SV) to date. AIMS/OBJECTIVES: We have aimed to clarify the expression of AQP-10, -11 and -12 in the cochlea lateral wall. MATERIALS AND METHODS: Using Wistar rats, we examined the expression of AQP-10, -11 and -12 in the cochlea lateral wall using molecular approaches and immunohistochemistry. RESULTS: AQP-11 was molecular biologically expressed, but the expression of AQP-10 and -12 was not observed. Immunohistochemically, AQP-11 was diffusely localized in the basal cells and marginal cells of the rat SV but was not expressed at the apical site of marginal cells with double staining. The expression of AQP-10 and -12 was not observed. CONCLUSIONS AND SIGNIFICANCE: Only AQP-11 was expressed in the basal cells and marginal cells, but it was not expressed at the apical site of marginal cells. Based on this study, AQP-11 may not have an important role in water flux between the perilymph and endolymph.


Sujet(s)
Aquaporines , Rat Wistar , Strie vasculaire , Animaux , Rats , Aquaporines/métabolisme , Immunohistochimie , Strie vasculaire/métabolisme
12.
Front Mol Neurosci ; 17: 1368058, 2024.
Article de Anglais | MEDLINE | ID: mdl-38486963

RÉSUMÉ

The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.

13.
BMC Genomics ; 25(1): 213, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38413848

RÉSUMÉ

BACKGROUND: The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS: We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS: Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION: Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.


Sujet(s)
Surdité neurosensorielle , Strie vasculaire , Adulte , Humains , Animaux , Souris , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Analyse de l'expression du gène de la cellule unique , Surdité neurosensorielle/génétique , Surdité neurosensorielle/anatomopathologie , Cochlée , Facteurs de transcription/métabolisme
14.
Antioxid Redox Signal ; 40(7-9): 470-491, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37476961

RÉSUMÉ

Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.


Sujet(s)
Surdité neurosensorielle , Strie vasculaire , Souris , Animaux , Strie vasculaire/anatomopathologie , Strie vasculaire/physiologie , Espèces réactives de l'oxygène , Souris de lignée C57BL , Surdité neurosensorielle/induit chimiquement , Surdité neurosensorielle/anatomopathologie , Cellules ciliées auditives externes/anatomopathologie , Cellules ciliées auditives externes/physiologie , Acétylcystéine/pharmacologie
15.
BMC Mol Cell Biol ; 24(1): 27, 2023 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-37605129

RÉSUMÉ

BACKGROUND: Age-related hearing loss, known as presbycusis, is the result of auditory system degeneration. Numerous studies have suggested that reactive oxygen species (ROS) and mitochondrial oxidative damage play important roles in the occurrence and progression of aging. The D-galactose (D-gal)-induced aging model is well known and widely utilized in aging research. Our previous studies demonstrate that administration of D-gal causes mitochondrial oxidative damage and causes subsequent dysfunction in the cochlear ribbon synapses, which in turn leads to hearing changes and early stage presbycusis. Stria vascularis (SV) cells are vital for hearing function. However, it is unclear to what extent D-gal induces oxidative damage and apoptosis in the cochlear SV of mice. In addition, the source of the causative ROS in the cochlear SV has not been fully investigated. METHODS: In this study, we investigated ROS generation in the cochlear SV of mice treated with D-gal. Hearing function was measured using the auditory brainstem response (ABR). Immunofluorescence was used to examine apoptosis and oxidative damage. Transmission electron microscopy was also used to investigate the mitochondrial ultrastructure. DNA fragmentation was determined using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) and ATP were also measured. RESULTS: We found that D-gal-treated mice exhibited a significant shift in the mean amplitude and latency of the ABR; a remarkable increase in the levels of NADPH oxidase (NOX-2), Uncoupling protein 2 (UCP2) and cleaved caspase-3 (c-Cas3) was observed, as well as an increase in the number of TUNEL-positive cells were observed in the SV of mice. Both the expression of the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) and a commonly occurring mitochondrial DNA deletion were markedly elevated in the SV of mice that had been treated with D-gal to induce aging. Conversely, the ATP level and MMP were significantly reduced in D-gal-induced aging mice. We also found alterations in the mitochondrial ultrastructure in the SV of aging mice, which include swollen and distorted mitochondrial shape, shortened and thickened microvilli, and the accumulation of lysosomes in the SV. CONCLUSION: Our findings suggest that the impairment of cochlear SV during presbycusis may be caused by mitochondrial oxidative damage and subsequent apoptosis.


Sujet(s)
Presbyacousie , Strie vasculaire , Animaux , Souris , Galactose/pharmacologie , Espèces réactives de l'oxygène , Stress oxydatif , Apoptose , Adénosine triphosphate
16.
Front Neurol ; 14: 1214408, 2023.
Article de Anglais | MEDLINE | ID: mdl-37560455

RÉSUMÉ

Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.

17.
BMC Med Genomics ; 16(1): 133, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37322474

RÉSUMÉ

BACKGROUND: The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS: We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS: We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION: Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.


Sujet(s)
Surdité , Strie vasculaire , Souris , Animaux , Strie vasculaire/métabolisme , Strie vasculaire/anatomopathologie , Transporteurs d'anions/génétique , Transporteurs d'anions/métabolisme , Cochlée/métabolisme , Cochlée/anatomopathologie , Surdité/génétique , Transporteurs de sulfate/génétique , ARN/métabolisme
18.
J Neurosci ; 43(27): 5057-5075, 2023 07 05.
Article de Anglais | MEDLINE | ID: mdl-37268417

RÉSUMÉ

Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.


Sujet(s)
Surdité , Presbyacousie , Mâle , Adulte d'âge moyen , Femelle , Humains , Animaux , Souris , Sujet âgé , Strie vasculaire/anatomopathologie , Qualité de vie , Cochlée/métabolisme , Presbyacousie/anatomopathologie , Surdité/anatomopathologie , Macrophages , Inflammation/métabolisme
19.
J Pathol ; 260(3): 353-364, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37256677

RÉSUMÉ

Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Sujet(s)
Oreille interne , Néphropathie familiale avec surdité , Animaux , Souris , Néphropathie familiale avec surdité/métabolisme , Récepteurs aux angiotensines/métabolisme , Récepteurs aux angiotensines/usage thérapeutique , Membrane basale glomérulaire/métabolisme , Collagène de type IV/génétique , Oreille interne/métabolisme , Oreille interne/anatomopathologie , Endothélines/métabolisme , Endothélines/usage thérapeutique
20.
Hear Res ; 434: 108784, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37172415

RÉSUMÉ

The c-Jun N-terminal kinase (JNK) pathway is a vital component of the mitogen-activated protein kinase cascade, which regulates cell death and survival. The present study aimed to explore the Spatio-temporal changes in all JNK isoforms in the cochleae of C57/BL6J mice with age-related hearing loss. Changes in the three isoforms of JNKs in the cochleae of an animal model with presbycusis and the senescent HEI-OC1 cell line were tested by immunohistochemistry staining and western blotting. Our results demonstrated that all three JNK isoforms are distributed in the cochleae, and the expression patterns of JNK1, JNK2, and JNK3 differed in hair cells, spiral ganglion neurons, and stria vascularis, with great significance in the cochleae of adult C57BL/6J mice. The levels of JNK1, JNK2, and JNK3 showed various spatio-temporal changes in the aging mice. In a senescent hair cell model, changes in JNK1, JNK2, and JNK3 expression levels were similar to those observed in the cochleae. Our study is the first to show that JNK3 is highly expressed in the hair cells of C57BL/6J mice and further increases in conjunction with age-related hearing loss, suggesting that it may play a more critical role than previously believed in hair cell loss and spiral ganglion degeneration.


Sujet(s)
JNK Mitogen-Activated Protein Kinases , Presbyacousie , Souris , Animaux , JNK Mitogen-Activated Protein Kinases/métabolisme , Presbyacousie/génétique , Souris de lignée C57BL , Mitogen-Activated Protein Kinase 8/génétique , Mitogen-Activated Protein Kinase 8/métabolisme , Isoformes de protéines
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE