Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 168
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Cell Biochem ; 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38951379

RÉSUMÉ

Despite the implementation of novel therapeutic regimens and extensive research efforts, chemoresistance remains a formidable challenge in the treatment of acute myeloid leukemia (AML). Notably, the involvement of lysosomes in chemoresistance has sparked interest in developing lysosome-targeted therapies to sensitize tumor cells to currently approved chemotherapy or as innovative pharmacological approaches. Moreover, as ion channels on the lysosomal membrane are critical regulators of lysosomal function, they present potential as novel targets for enhancing chemosensitivity. Here, we discovered that the expression of a lysosomal cation channel, namely transient receptor potential mucolipin 1 (TRPML1), was elevated in AML cells. Inhibiting TRPML1 individually does not impact the proliferation and apoptosis of AML cells. Importantly, inhibition of TRPML1 demonstrated the potential to modulate the sensitivity of AML cells to chemotherapeutic agents. Exploration of the underlying mechanisms revealed that suppression of TRPML1 impaired autophagy while concurrently increasing the production of reactive oxygen species (ROS) and ROS-mediated lipid peroxidation (Lipid-ROS) in AML cells. Finally, the knockdown of TRPML1 significantly reduced OCI-AML3 tumor growth following chemotherapy in a mouse model of human leukemia. In summary, targeting TRPML1 represents a promising approach for combination therapy aimed at enhancing chemosensitivity in treating AML.

2.
Front Physiol ; 15: 1426783, 2024.
Article de Anglais | MEDLINE | ID: mdl-38974517

RÉSUMÉ

Lysosomal Ca2+ signaling is emerging as a crucial regulator of endothelial Ca2+ dynamics. Ca2+ release from the acidic vesicles in response to extracellular stimulation is usually promoted via Two Pore Channels (TPCs) and is amplified by endoplasmic reticulum (ER)-embedded inositol-1,3,4-trisphosphate (InsP3) receptors and ryanodine receptors. Emerging evidence suggests that sub-cellular Ca2+ signals in vascular endothelial cells can also be generated by the Transient Receptor Potential Mucolipin 1 channel (TRPML1) channel, which controls vesicle trafficking, autophagy and gene expression. Herein, we adopted a multidisciplinary approach, including live cell imaging, pharmacological manipulation, and gene targeting, revealing that TRPML1 protein is expressed and triggers global Ca2+ signals in the human brain microvascular endothelial cell line, hCMEC/D3. The direct stimulation of TRPML1 with both the synthetic agonist, ML-SA1, and the endogenous ligand phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) induced a significant increase in [Ca2+]i, that was reduced by pharmacological blockade and genetic silencing of TRPML1. In addition, TRPML1-mediated lysosomal Ca2+ release was sustained both by lysosomal Ca2+ release and ER Ca2+- release through inositol-1,4,5-trisphophate receptors and store-operated Ca2+ entry. Notably, interfering with TRPML1-mediated lysosomal Ca2+ mobilization led to a decrease in the free ER Ca2+ concentration. Imaging of DAF-FM fluorescence revealed that TRPML1 stimulation could also induce a significant Ca2+-dependent increase in nitric oxide concentration. Finally, the pharmacological and genetic blockade of TRPML1 impaired ATP-induced intracellular Ca2+ release and NO production. These findings, therefore, shed novel light on the mechanisms whereby the lysosomal Ca2+ store can shape endothelial Ca2+ signaling and Ca2+-dependent functions in vascular endothelial cells.

3.
Antiviral Res ; 228: 105940, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38901736

RÉSUMÉ

The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.


Sujet(s)
Antiviraux , Canaux cationiques TRP , Réplication virale , Infection par le virus Zika , Virus Zika , Virus Zika/effets des médicaments et des substances chimiques , Virus Zika/physiologie , Réplication virale/effets des médicaments et des substances chimiques , Humains , Antiviraux/pharmacologie , Canaux cationiques TRP/agonistes , Canaux cationiques TRP/métabolisme , Infection par le virus Zika/virologie , Infection par le virus Zika/traitement médicamenteux , Chlorocebus aethiops , Animaux , Cellules Vero , Cholestérol/métabolisme , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Lignée cellulaire , Cellules HEK293 , Phtalimides , Quinoléines
4.
Front Immunol ; 15: 1389194, 2024.
Article de Anglais | MEDLINE | ID: mdl-38840905

RÉSUMÉ

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Sujet(s)
Canaux calciques , Endosomes , Lysosomes , Tumeurs , Canaux cationiques TRP , Humains , Tumeurs/immunologie , Tumeurs/métabolisme , Lysosomes/métabolisme , Lysosomes/immunologie , Endosomes/métabolisme , Endosomes/immunologie , Animaux , Canaux cationiques TRP/métabolisme , Canaux calciques/métabolisme , Canaux cationiques TRPM/métabolisme , Canaux cationiques TRPM/génétique , Canaux cationiques TRPM/immunologie ,
5.
Mol Ther Methods Clin Dev ; 32(2): 101269, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38934011

RÉSUMÉ

Mucolipidosis IV (MLIV) is a rare, autosomal recessive, lysosomal disease characterized by intellectual disability, motor deficits, and progressive vision loss. Using adeno-associated vector 9 (AAV9) and AAV-PHP.B as delivery vectors, we previously demonstrated the feasibility of modifying disease course in a mouse model of MLIV by the human MCOLN1 gene transfer. Here, using a primate-enabling capsid AAV.CPP.16 (CPP16), we constructed a new, clinic-oriented MCOLN1 gene expression vector and demonstrated its efficacy in the preclinical model of MLIV. Systemic administration of CPP16-MCOLN1 in adult symptomatic Mcoln1 -/- mice at a dose of 1e12 vg per mouse resulted in MCOLN1 expression in the brain and peripheral tissues, alleviated brain pathology, rescued neuromotor function, and completely prevented paralysis. Notable expression of MCOLN1 transcripts was also detected in the retina of the mouse, which had exhibited significant degeneration at the time of the treatment. However, no increase in retinal thickness was observed after gene therapy treatment. Our results suggest a new AAV-based systemic gene replacement therapy for the treatment of MLIV that could be translated into clinical studies.

6.
Biol Trace Elem Res ; 2024 May 18.
Article de Anglais | MEDLINE | ID: mdl-38760610

RÉSUMÉ

The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.

7.
Curr Neuropharmacol ; 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38766825

RÉSUMÉ

Besides controlling several organellar functions, lysosomal channels also guide the catabolic "self-eating" process named autophagy, which is mainly involved in protein and organelle quality control. Neuronal cells are particularly sensitive to the rate of autophagic flux either under physiological conditions or during the degenerative process. Accordingly, neurodegeneration occurring in Parkinson's (PD), Alzheimer's (AD), and Huntington's Diseases (HD), and Amyotrophic Lateral Sclerosis (ALS) as well as Lysosomal Storage Diseases (LSD) is partially due to defective autophagy and accumulation of toxic aggregates. In this regard, dysfunction of lysosomal ionic homeostasis has been identified as a putative cause of aberrant autophagy. From a therapeutic perspective, Transient Receptor Potential Channel Mucolipin 1 (TRPML1) and Two-Pore Channel isoform 2 (TPC2), regulating lysosomal homeostasis, are now considered promising druggable targets in neurodegenerative diseases. Compelling evidence suggests that pharmacological modulation of TRPML1 and TPC2 may rescue the pathological phenotype associated with autophagy dysfunction in AD, PD, HD, ALS, and LSD. Although pharmacological repurposing has identified several already used drugs with the ability to modulate TPC2, and several tools are already available for the modulation of TRPML1, many efforts are necessary to design and test new entities with much higher specificity in order to reduce dysfunctional autophagy during neurodegeneration.

8.
Cell Signal ; 119: 111167, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38604341

RÉSUMÉ

Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.


Sujet(s)
Autophagie , Poils , Animaux , Souris , Humains , Autophagie/effets des médicaments et des substances chimiques , Poils/croissance et développement , Poils/effets des médicaments et des substances chimiques , Follicule pileux/effets des médicaments et des substances chimiques , Follicule pileux/cytologie , Espèces réactives de l'oxygène/métabolisme , Souris de lignée C57BL , Derme/cytologie , Derme/effets des médicaments et des substances chimiques , Canaux cationiques TRP/métabolisme , Signalisation calcique/effets des médicaments et des substances chimiques
9.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38598430

RÉSUMÉ

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Sujet(s)
Canaux calciques , Canaux cationiques TRP , Canaux calciques/métabolisme , , Calcium/métabolisme , Lysosomes/métabolisme , NADP/métabolisme , Pression osmotique , Canaux cationiques TRP/métabolisme
10.
Biomedicines ; 12(4)2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38672219

RÉSUMÉ

Pancreatic cancer is characterized by its high mortality rate and limited treatment options, often driven by oncogenic RAS mutations. In this study, we investigated the metabolomic profiles of pancreatic cancer cells based on their KRAS genetic status. Utilizing both KRAS-wildtype BxPC3 and KRAS-mutant PANC1 cell lines, we identified 195 metabolites differentially altered by KRAS status through untargeted metabolomics. Principal component analysis and hierarchical condition trees revealed distinct separation between KRAS-wildtype and KRAS-mutant cells. Metabolite set enrichment analysis highlighted significant pathways such as homocysteine degradation and taurine and hypotaurine metabolism. Additionally, lipid enrichment analysis identified pathways including fatty acyl glycosides and sphingoid bases. Mapping of identified metabolites to KEGG pathways identified nine significant metabolic pathways associated with KRAS status, indicating diverse metabolic alterations in pancreatic cancer cells. Furthermore, we explored the impact of TRPML1 inhibition on the metabolomic profile of KRAS-mutant pancreatic cancer cells. TRPML1 inhibition using ML-SI1 significantly altered the metabolomic profile, leading to distinct separation between vehicle-treated and ML-SI1-treated PANC1 cells. Metabolite set enrichment analysis revealed enriched pathways such as arginine and proline metabolism, and mapping to KEGG pathways identified 17 significant metabolic pathways associated with TRPML1 inhibition. Interestingly, some metabolites identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1 inhibition, suggesting their potential as biomarkers for KRAS-mutant cancer cells. Overall, our findings shed light on the distinct metabolite changes induced by both KRAS status and TRPML1 inhibition in pancreatic cancer cells, providing insights into potential therapeutic targets and biomarkers for this deadly disease.

11.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38451235

RÉSUMÉ

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Sujet(s)
Canaux ioniques , Humains , Animaux , Canaux ioniques/métabolisme , Membranes intracellulaires/métabolisme , Organites/métabolisme , Organites/physiologie
12.
J Ethnopharmacol ; 328: 118076, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38521431

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: QiXian Granule (QXG) is an integrated traditional Chinese medicine formula used to treat postmenopausal atherosclerotic (AS) cardiovascular diseases. The previous studies have found that QXG inhibited isoproterenol (ISO)-induced myocardial remodeling. And its active ingredient, Icraiin, can inhibit ferroptosis by promoting oxidized low-density lipoprotein (xo-LDL)-induced vascular endothelial cell injury and autophagy in atherosclerotic mice. Another active ingredient, Salvianolic Acid B, can suppress ferroptosis and apoptosis during myocardial ischemia/reperfusion injury by reducing ubiquitin-proteasome degradation of Glutathione Peroxidase 4 (GPX4) and down-regulating the reactive oxygen species (ROS)- c-Jun N-terminal kinases (JNK)/mitogen-activated protein kinase (MAPK) pathway. AIM OF THE STUDY: The objective of this research was to assess the possible impact of QXG on atherosclerosis in postmenopausal individuals and investigate its underlying mechanisms. MATERIALS AND METHODS: Female ApoE-/- mice underwent ovariectomy and were subjected to a high-fat diet (HFD) to establish a postmenopausal atherosclerosis model. The therapeutic effects of QXG were observed in vivo and in vitro through intraperitoneal injection of erastin, G-protein Coupled Estrogen Receptor (GPER) inhibitor (G15), and silent Mucolipin Transient Receptor Potential Channel 1 (TRPML1) adenovirus injection via tail vein. UPLC-MS and molecular docking techniques identified and evaluated major QXG components, contributing to the investigation of QXG's anti-postmenopausal atherosclerotic effects. RESULTS: QXG increased serum Estradiol levels, decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, which indicated QXG had estrogen-like effects in Ovx/ApoE-/- mice. Furthermore, QXG demonstrated the potential to impede the progression of AS in Ovx/ApoE-/- mice, as evidenced by reductions in serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels. Additionally, QXG inhibited ferroptosis in Ovx/ApoE-/- mice. Notably, UPLC-MS analysis identified a total of 106 active components in QXG. The results of molecular docking analysis demonstrated that Epmedin B, Astragaloside II, and Orientin exhibit strong binding affinity towards TRPML1. QXG alleviates the progression of atherosclerosis by activating TRPML1 through the GPER pathway or directly activating TRPML1, thereby inhibiting GPX4 and ferritin heavy chain (FTH1)-mediated iron pendant disease. In vitro, QXG-treated serum suppressed proliferation, migration, and ox-LDL-induced MMP and ROS elevation in HAECs. CONCLUSION: QXG inhibited GPX4 and FTH1-mediated ferroptosis in vascular endothelial cells through up-regulating GPER/TRPML1 signaling, providing a potential therapeutic option for postmenopausal females seeking a safe and effective medication to prevent atherosclerosis. The study highlights QXG's estrogenic properties and its promising role in combating postmenopausal atherosclerosis.


Sujet(s)
Athérosclérose , Médicaments issus de plantes chinoises , Ferroptose , Femelle , Animaux , Souris , Cellules endothéliales , Espèces réactives de l'oxygène/métabolisme , Transduction du signal , Post-ménopause , Chromatographie en phase liquide , Simulation de docking moléculaire , Spectrométrie de masse en tandem , Athérosclérose/traitement médicamenteux , Athérosclérose/prévention et contrôle , Athérosclérose/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Cholestérol LDL/métabolisme , Oestrogènes/métabolisme , Apolipoprotéines E , Lysosomes/métabolisme
13.
J Vet Res ; 68(1): 45-53, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38525220

RÉSUMÉ

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods: Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results: The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion: Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.

14.
Cells ; 13(2)2024 01 08.
Article de Anglais | MEDLINE | ID: mdl-38247807

RÉSUMÉ

BACKGROUND: The lysosome has emerged as a promising target for overcoming chemoresistance, owing to its role in facilitating the lysosomal sequestration of drugs. The lysosomal calcium channel TRPML1 not only influences lysosomal biogenesis but also coordinates both endocytosis and exocytosis. This study explored the modulation of cisplatin sensitivity by regulating TRPML1-mediated lysosomal exocytosis and identified the metabolomic profile altered by TRPML1 inhibition. METHODS: We used four types of ovarian cancer cells: two cancer cell lines (OVCAR8 and TOV21G) and two patient-derived ovarian cancer cells. Metabolomic analyses were conducted to identify altered metabolites by TRPML1 inhibition. RESULTS: Lysosomal exocytosis in response to cisplatin was observed in resistant cancer cells, whereas the phenomenon was absent in sensitive cancer cells. Through the pharmacological intervention of TRPML1, lysosomal exocytosis was interrupted, leading to the sensitization of resistant cancer cells to cisplatin treatment. To assess the impact of lysosomal exocytosis on chemoresistance, we conducted an untargeted metabolomic analysis on cisplatin-resistant ovarian cancer cells with TRPML1 inhibition. Among the 1446 differentially identified metabolites, we focused on 84 significant metabolites. Metabolite set analysis revealed their involvement in diverse pathways. CONCLUSIONS: These findings collectively have the potential to enhance our understanding of the interplay between lysosomal exocytosis and chemoresistance, providing valuable insights for the development of innovative therapeutic strategies.


Sujet(s)
Cisplatine , Exocytose , Tumeurs de l'ovaire , Femelle , Humains , Cisplatine/pharmacologie , Lysosomes/métabolisme , Tumeurs de l'ovaire/traitement médicamenteux , Canaux cationiques TRP/métabolisme , Résistance aux médicaments antinéoplasiques/génétique
15.
Autophagy ; 20(5): 1203-1204, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38180017

RÉSUMÉ

MCOLN1 and MCOLN3 are two Ca2+ release channels residing in the endolysosomal membrane. They are activated by phosphatidylinositol (PtdIns)-3-phosphate (PtdIns3P) and/or PtdIns(3,5)P2. Their activities are also regulated by lumenal pH, with low pH enhancing that of MCOLN1 and high pH increasing that of MCOLN3. Recent studies further suggest that upon starvation, both MCOLN1 and MCOLN3 are activated by a reduction in MTORC1 activity; their activation in turn regulates MTORC1 activity to facilitate macroautophagic/autophagic flux. On the one hand, MCOLN3 appears to be recruited to phagophores where it is activated by PtdIns3P and high pH to inhibit MTORC1 activity using a positive feedback mechanism, thereby increasing autophagy induction. On the other hand, MCOLN1 is activated by PtdIns(3,5)P2 and low pH in (auto)lysosomes to increase MTORC1 activity using a negative feedback mechanism, promoting autophagic lysosome reformation. The cell uses the two feedback mechanisms to ensure efficient autophagic flux to survive adverse conditions such as nutrient deprivation and bacterial infection.


Sujet(s)
Autophagie , Complexe-1 cible mécanistique de la rapamycine , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Autophagie/physiologie , Humains , Animaux , Canaux cationiques TRP/métabolisme , Lysosomes/métabolisme , Modèles biologiques
16.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37581847

RÉSUMÉ

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Sujet(s)
Facteurs de croissance fibroblastique , Protéines proto-oncogènes c-akt , Traumatismes de la moelle épinière , Rats , Souris , Animaux , Protéines proto-oncogènes c-akt/métabolisme , Pyroptose , Rat Sprague-Dawley , Sérine-thréonine kinases TOR/métabolisme , Moelle spinale/métabolisme , Traumatismes de la moelle épinière/métabolisme , Autophagie
17.
Mol Neurobiol ; 61(8): 4992-5001, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38157120

RÉSUMÉ

Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.


Sujet(s)
Mutation , Maladies neurodégénératives , Canaux cationiques TRP , Humains , Canaux cationiques TRP/métabolisme , Canaux cationiques TRP/génétique , Maladies neurodégénératives/génétique , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/anatomopathologie , Animaux , Mutation/génétique , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie
18.
Food Chem Toxicol ; 184: 114378, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38097005

RÉSUMÉ

Evidence suggests that ferroptosis participates in kidney injury. However, the role of ferroptosis in antimony (Sb) induced nephrotoxicity and the mechanism are unknown. Here, we demonstrated that Sb induced injury in renal tubular epithelial cells (RTECs) and ferroptosis. Inhibition of ferroptosis reduced RTECs injury. Besides, elimination of reactive oxygen species (ROS) alleviated ferroptosis and RTECs injury. Moreover, exposure to Sb not only increased the co-localization of glutathione peroxidase 4 (GPX4) and LAMP1, but also decreased the levels of MEF2D and LRRK2, while increased the levels of HSC70, HSP90, and LAMP2a. These findings suggest that Sb activates chaperone-mediated autophagy (CMA), enhances lysosomal transport and subsequent degradation of GPX4, ultimately leads to ferroptosis. Additionally, up-regulation of lysosomal cationic channel, TRPML1, mitigated RTECs injury and ferroptosis. Mechanistically, up-regulation of TRPML1 mitigated the changes in CMA-associated proteins induced by Sb, diminished the binding of HSC70, HSP90, and TRPML1 with LAMP2a. Furthermore, NAC restored the decreased TRPML1 level caused by Sb. In summary, deficiency of TRPML1, secondary to increased ROS induced by Sb, facilitates the CMA-dependent degradation of GPX4, thereby leading to ferroptosis and RTECs injury. These findings provide insights into the mechanism underlying Sb-induced nephrotoxicity and propose TRPML1 as a promising therapeutic target.


Sujet(s)
Autophagie médiée par les chaperonnes , Ferroptose , Espèces réactives de l'oxygène/métabolisme , Antimoine/toxicité , Protéine de membrane-2 associée au lysosome/métabolisme , Protéines du choc thermique HSP90 , Autophagie
19.
Bioorg Med Chem Lett ; 98: 129595, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38141860

RÉSUMÉ

Screening a library of >100,000 compounds identified the substituted tetrazole compound 1 as a selective TRPML1 agonist. Both enantiomers of compound 1 were separated and profiled in vitro and in vivo. Their selectivity, ready availability and CNS penetration should enable them to serve as the tool compounds of choice in future TRPML1 channel activation studies. SAR studies on conformationally locked macrocyclic analogs further improved the TRPML1 agonist potency while retaining the selectivity.


Sujet(s)
Tétrazoles , Canaux cationiques TRP , Canaux cationiques TRP/agonistes , Relation structure-activité , Tétrazoles/composition chimique , Tétrazoles/pharmacologie
20.
Front Oncol ; 13: 1326023, 2023.
Article de Anglais | MEDLINE | ID: mdl-38156109

RÉSUMÉ

Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer, and effective treatments are urgently needed owing to its poor prognosis. Surgery, radiotherapy, and chemotherapy, alone or in combination, are the leading choices for TNBC therapy. Although promising approaches and procedures have emerged, several challenges, such as off-target effects, drug resistance, and severe side effects, remain to be addressed. Recently, transient receptor potential channel mucolipin 1 (TRPML1) has attracted the attention of researchers because its expression has been implicated in numerous diseases, including cancer. TRPML1 regulates biological events and signaling pathways, including autophagic flux, exocytosis, ionic homeostasis, and lysosomal biogenesis, all contributing to tumorigenesis and cancer progression. TRPML1 also functions as a building block for cancer cell growth, mitogenic signaling, priming tissues for metastasis, and activation of transcriptional programs, processes involved in several malignant tumors. This review provides an overview of breast cancer epidemiology and diagnostic techniques and then discusses the existing therapeutics. Additionally, we elaborate on the development of, and associated challenges to, TNBC diagnostics and treatment and the feasibility of TRPML1 as a therapeutic target for TNBC.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE