Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.891
Filtrer
1.
Acta Biomater ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38960111

RÉSUMÉ

Photothermal therapy (PTT) has attracted attention as a highly effective non-invasive treatment method. However, the high localized temperatures (>50 °C) required for its treatment will inevitably cause damage to the surrounding normal tissues. Therefore, it is important to develop novel and effective strategies to achieve mild photothermal therapy (mPTT). The overexpression of heat shock proteins (HSPs), a widespread heat stress protein, leads to the generation of heat resistance in cancer cells, which seriously affects the therapeutic effect. Thus, inhibiting the expression of HSPs to reduce the heat resistance of tumor cells is expected to enhance the therapeutic effect of mPTT. Here, we successfully synthesized a fluorescent probe bonded with an amphiphilic polypeptide to a cyanine dye and achieved physical encapsulation of the blocker SB705498 through a self-assembly process. SB705498 promotes transient receptor potential vanilloid member 1 (TRPV1) channel blockade that can inhibit the translocation of the heat shock transcription factor 1 (HSF 1) by blocking the influx of calcium and thus affecting the expression of HSPs, which has the potential to enhance the thermotherapy of cancer under mild conditions. In addition, the nanoparticles enabled NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Therefore, this study provides a new strategy for realizing precise mPTT(<45 °C) guided by NIR-II imaging. STATEMENT OF SIGNIFICANCE: Inhibition of overexpression of heat shock proteins (HSPs) in cancer photothermal therapy (PTT) is expected to enhance the therapeutic effect of mild photothermal therapy (mPTT). In this study, we synthesized a fluorescent probe bonded to cyanine dyes with amphiphilic polypeptides and physically wrapped the blocker SB705498 through a self-assembly process. As a transient receptor potential vanillin 1 (TRPV1) channel blocker, SB705498 inhibits heat shock transcription factor 1 (HSF1) translocation by blocking calcium ion influx, thereby improving mPTT efficacy by inhibiting the expression of HSPs. The nanoparticles also enable NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Thus, this study provides a new strategy for NIR-II mPTT.

2.
J Inflamm Res ; 17: 4257-4275, 2024.
Article de Anglais | MEDLINE | ID: mdl-38979434

RÉSUMÉ

Introduction: Although sertraline has been widely used for chronic prostatitis (CP), the mechanisms are unclear. Herein, we explored the mechanisms of sertraline in treating CP. Methods: Network pharmacology methods were used to explore the potential targets and molecular mechanisms. LPS was used to stimulate RWPE-1 cells to construct an in vitro model of CP. An experimental autoimmune prostatitis (EAP) mice model was built. CCK-8 assay, EdU assay, BrdU detection, and Tunel assay were performed to evaluate the proliferation and apoptosis process of cells or tissues, respectively. DCFH-DA and Fluo-4 fluorescence probes were used to detect intracellular ROS and calcium concentrations. Von Frey filaments and open-field tests were utilized to evaluate pain response and depressive-like behavior of mice. Histopathology was evaluated through hematoxylin and eosin staining. RT-qPCR, Western blot, immunofluorescence, and immunohistochemistry were utilized to evaluate the transcription, expression, and location of related proteins. Molecular dynamics (MD) simulation and surface plasmon resonance (SPR) assay were performed to measure the binding capacity of sertraline and related proteins. Results: Through a network pharmacology analysis, 27 potential targets of sertraline for CP were obtained, and 5 key targets (CHRM1, ADRA1B, HTR2B, HTR2A, and TRPV1) were finally identified. Functional experiments suggested that TRPV1 was involved in the proliferation, apoptosis inhibition, and ROS production of LPS-induced RWPE-1 cells. In vitro experiments showed that sertraline significantly inhibited cell proliferation, ROS generation, and transcription of inflammation cytokines of LPS-induced RWPE-1 cells. Additionally, sertraline markedly promoted the apoptosis level of LPS-stimulated RWPE-1 cells and elevated the expression level of BAX while reducing the expression levels of Bcl2 and Caspase-3. MD simulation and SPR assay confirmed the direct binding of sertraline to TRPV1. Moreover, sertraline significantly down-regulated the expression level of TRPV1 and inhibited calcium influx of LPS-induced RWPE-1 cells. TRPV1 agonist (Capsaicin) significantly restored the effects on proliferation, apoptosis, ROS production, and calcium influx of sertraline on LPS-induced RWPE-1 cells. Mice experiments demonstrated that sertraline treatment could reduce pain response, improve depression-like symptoms, and relieve local prostate inflammation of EAP mice, as well as down-regulated the expression level of TRPV1, inhibit the proliferation, and promote apoptosis of prostate tissues in EAP mice. Discussion: The results revealed the anti-inflammatory effect of sertraline for RWPE-1 cells and EAP mice, and the potential mechanism was regulating the TRPV1 channel. It indicated that sertraline might serve as a complementary anti-inflammatory agent for CP.

3.
CNS Neurosci Ther ; 30(7): e14829, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38961264

RÉSUMÉ

AIMS: Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS: Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 µL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1ß were measured via RT-PCR. RESULTS: TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS: PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.


Sujet(s)
Antigène CD274 , Peptide relié au gène de la calcitonine , Souris de lignée C57BL , Paclitaxel , Neuropathies périphériques , Caractères sexuels , Canaux cationiques TRPV , Animaux , Paclitaxel/toxicité , Mâle , Femelle , Souris , Peptide relié au gène de la calcitonine/métabolisme , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/antagonistes et inhibiteurs , Antigène CD274/métabolisme , Neuropathies périphériques/induit chimiquement , Antinéoplasiques d'origine végétale/toxicité , Moelle spinale/effets des médicaments et des substances chimiques , Moelle spinale/métabolisme , Hyperalgésie/induit chimiquement , Hyperalgésie/traitement médicamenteux , Hyperalgésie/métabolisme
4.
Cell Calcium ; 123: 102924, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38964236

RÉSUMÉ

Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.

5.
Heliyon ; 10(12): e33050, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38994087

RÉSUMÉ

Pruritus is an uncomfortable sensation induced by various pruritogens, including serotonin. Serotonin, acting as an inflammatory mediator, can activate a histamine-independent pathway. Consequently, many anti-pruritus medications, such as antihistamines, are not effective in adequately relieving patient symptoms. Niclosamide, an anthelmintic drug, has recently demonstrated an affinity for Metabotropic glutamate receptors (mGluRs). mGluRs are a group of receptors activated by glutamate, and they are involved in regulating neuronal excitability. In this study, we utilized mouse models of serotonergic itch and administered different doses of Niclosamide to examine the expression of mGluR1, mGluR5, and 5-HT2. The administration of 5 mg/kg Niclosamide successfully suppressed pruritus in the mice. Additionally, the levels of mGluR1, mGluR5, 5-HT2, and TRPV1 were significantly reduced. These findings suggest that Niclosamide holds promise as a potential antipruritic drug.

6.
Addict Biol ; 29(7)2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38963015

RÉSUMÉ

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Sujet(s)
Anxiété , Endocannabinoïdes , Épigenèse génétique , Mémoire à court terme , Nicotine , Stress psychologique , Canaux cationiques TRPV , Animaux , Canaux cationiques TRPV/effets des médicaments et des substances chimiques , Nicotine/pharmacologie , Souris , Mémoire à court terme/effets des médicaments et des substances chimiques , Endocannabinoïdes/métabolisme , Mâle , Épigenèse génétique/effets des médicaments et des substances chimiques , Inhibiteurs de désacétylase d'histone/pharmacologie , Récepteur cannabinoïde de type CB1/effets des médicaments et des substances chimiques , Troubles de la mémoire/induit chimiquement , Capsaïcine/pharmacologie , Capsaïcine/analogues et dérivés , Modèles animaux de maladie humaine , Rimonabant/pharmacologie , Agonistes nicotiniques/pharmacologie , Pipéridines/pharmacologie
7.
Int J Biol Macromol ; 275(Pt 1): 133658, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38969044

RÉSUMÉ

Venomous toxins hold immense value as tools in elucidating the intricate structure and underlying mechanisms of ion channels. In this article, we identified of two novel toxins, Hainantoxin-XXI (HNTX-XXI) and Hainantoxin-XXII (HNTX-XXII), derived from the venom of the Chinese spider Ornithoctonus hainana. HNTX-XXI, boasting a molecular weight of 6869.095 Da, comprises 64 amino acid residues and contains 8 cysteines. Meanwhile, HNTX-XXII, with a molecular weight of 8623.732 Da, comprises 77 amino acid residues and contains 12 cysteines. Remarkably, we discovered that both HNTX-XXI and HNTX-XXII possess the ability to activate TRPV1. They activated TRPV1 with EC50 values of 3.6 ± 0.19 µM and 862 ± 56 nM, respectively. Furthermore, the current generated by the activation of TRPV1 by these toxins can be rapidly blocked by ruthenium red. Intriguingly, our analysis revealed that the interaction between HNTX-XXI and TRPV1 is mediated by three key amino acid residues: L465, V469, and D471. Similarly, the interaction between HNTX-XXII and TRPV1 is facilitated by four key amino acid residues: A657, F659, E600, and R601. These findings provide profound insights into the molecular basis of toxin-TRPV1 interactions and pave the way for future research exploring the therapeutic potential of these toxic peptides.

8.
J Physiol ; 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38970617

RÉSUMÉ

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.

9.
Food Chem ; 456: 139980, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38850607

RÉSUMÉ

Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.

10.
Dev Cell ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38851191

RÉSUMÉ

Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding.

11.
Pulm Pharmacol Ther ; 86: 102302, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38823475

RÉSUMÉ

Although TRPV1 receptors play an essential role in the adverse effects on the airways following captopril treatment, there is no available evidence of their involvement in treatment regimens involving repeated doses of captopril. Comparing the difference in these two treatment regimens is essential since captopril is a continuous-use medication. Thus, this study explored the role of the transient receptor potential vanilloid 1 (TRPV1) in the effects of captopril on rat airways using two treatment regimens. Airway resistance, bronchoalveolar lavage (BAL), and histological and immunohistochemical analyses were conducted in rats administered with single or repeated doses of captopril. This study showed that the hyperresponsiveness to bradykinin and capsaicin in captopril-treated rats was acute. Treatment with the selective B2 antagonist, HOE140 reduced bradykinin hyperresponsiveness and abolished capsaicin exacerbation in single-dose captopril-treated rats. Likewise, degeneration of TRPV1-positive neurones also reduced hyperresponsiveness to bradykinin. Single-dose captopril treatment increased leukocyte infiltration in the BAL when compared with the vehicle and this increase was reduced by TRPV1-positive neurone degeneration. However, when compared with the vehicle treatment, animals treated with repeated doses of captopril showed an increase in leukocyte influx as early as 1 h after the last captopril treatment, but this effect disappeared after 24 h. Additionally, an increase in TRPV1 expression occurred only in animals who received repeated captopril doses and the degeneration of TRPV1-positive neurones attenuated TRPV1 upregulation. In conclusion, these data strongly indicate that a treatment regimen involving multiple doses of captopril not only enhances sensitisation but also upregulates TRPV1 expression. Consequently, targeting TRPV1 could serve as a promising strategy to reduce the negative impact of captopril on the airways.

12.
Front Cell Neurosci ; 18: 1391858, 2024.
Article de Anglais | MEDLINE | ID: mdl-38919332

RÉSUMÉ

Insulin-like growth factor-1 (IGF-1) is a polypeptide hormone with a ubiquitous distribution in numerous tissues and with various functions in both neuronal and non-neuronal cells. IGF-1 provides trophic support for many neurons of both the central and peripheral nervous systems. In the central nervous system (CNS), IGF-1R signaling regulates brain development, increases neuronal firing and modulates synaptic transmission. IGF-1 and IGF-IR are not only expressed in CNS neurons but also in sensory dorsal root ganglion (DRG) nociceptive neurons that convey pain signals. DRG nociceptive neurons express a variety of receptors and ion channels that are essential players of neuronal excitability, notably the ligand-gated cation channel TRPV1 and the voltage-gated M-type K+ channel, which, respectively, triggers and dampens sensory neuron excitability. Although many lines of evidence suggest that IGF-IR signaling contributes to pain sensitivity, its possible modulation of TRPV1 and M-type K+ channel remains largely unexplored. In this study, we examined the impact of IGF-1R signaling on DRG neuron excitability and its modulation of TRPV1 and M-type K+ channel activities in cultured rat DRG neurons. Acute application of IGF-1 to DRG neurons triggered hyper-excitability by inducing spontaneous firing or by increasing the frequency of spikes evoked by depolarizing current injection. These effects were prevented by the IGF-1R antagonist NVP-AEW541 and by the PI3Kinase blocker wortmannin. Surprisingly, acute exposure to IGF-1 profoundly inhibited both the TRPV1 current and the spike burst evoked by capsaicin. The Src kinase inhibitor PP2 potently depressed the capsaicin-evoked spike burst but did not alter the IGF-1 inhibition of the hyperexcitability triggered by capsaicin. Chronic IGF-1 treatment (24 h) reduced the spike firing evoked by depolarizing current injection and upregulated the M-current density. In contrast, chronic IGF-1 markedly increased the spike burst evoked by capsaicin. In all, our data suggest that IGF-1 exerts complex effects on DRG neuron excitability as revealed by its dual and opposite actions upon acute and chronic exposures.

13.
Cell Mol Life Sci ; 81(1): 281, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38940922

RÉSUMÉ

As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.


Sujet(s)
Canaux cationiques TRPV , Canaux cationiques TRPV/métabolisme , Animaux , Humains , Venins d'arthropode , Papillons de nuit , Peau/métabolisme , Peau/anatomopathologie , Larve/métabolisme
14.
Int Immunopharmacol ; 137: 112479, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-38901246

RÉSUMÉ

Shen chan decoction (SCD) as a significant Traditional Chinese medicine (TCM) to treat atopic dermatitis (AD), but its mechanism of action has not been clarified, so we started the present study, first possible effects of SCD on AD were predicted using network pharmacology. Next, dinitrochlorobenzene was used to establish a mouse model of AD. After successful modelling, the SCD were administered intragastrically to treat the mice. Eventually, the KEGG pathway enrichment analysis indicated that SCD improved AD mainly through effects on inflammation and the gut microbiota. The experimental findings revealed that SCD treatment attenuated AD symptoms and downregulate the characteristic immune factors, namely IL-4, IL-6 and IgE. Moreover, it promoted a balance between Th1/Th2 cells. Furthermore, the itch signaling pathways involving H1R/PAR-2/TRPV1 were inhibited. The 16S rRNA sequencing results indicated that SCD administration influenced the Firmicutes/Bacteroidetes ratio at the phylum level by augmenting the relative proportions of Lactobacillaceae and Muribaculaceae at the family and genus levels, while decreasing the abundances of Lactococcus and Ruminococcus. These findings suggest that internal administration of SCD is an effective therapeutic approach for AD. We suggest that SCD may be an alternative therapy for the treatment of AD.Additionally, it could offer valuable insights into the pathogenesis of AD and the development of innovative therapeutic agents.


Sujet(s)
Eczéma atopique , 1-Chloro-2,4-dinitro-benzène , Modèles animaux de maladie humaine , Médicaments issus de plantes chinoises , Microbiome gastro-intestinal , Souris de lignée BALB C , Eczéma atopique/traitement médicamenteux , Eczéma atopique/immunologie , Animaux , Médicaments issus de plantes chinoises/usage thérapeutique , Médicaments issus de plantes chinoises/pharmacologie , Souris , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Immunoglobuline E/sang , Mâle , Lymphocytes auxiliaires Th2/immunologie , Lymphocytes auxiliaires Th2/effets des médicaments et des substances chimiques , Pharmacologie des réseaux , Humains , Femelle , Équilibre Th1-Th2/effets des médicaments et des substances chimiques , Cytokines/métabolisme , Médecine traditionnelle chinoise , Anti-inflammatoires/usage thérapeutique , Anti-inflammatoires/pharmacologie
15.
Int J Mol Sci ; 25(11)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38892000

RÉSUMÉ

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Sujet(s)
Ganglions sensitifs des nerfs spinaux , Névralgie , Paclitaxel , Rat Sprague-Dawley , Canaux cationiques TRPM , Canaux cationiques TRPV , Animaux , Paclitaxel/effets indésirables , Paclitaxel/pharmacologie , Canaux cationiques TRPM/métabolisme , Canaux cationiques TRPV/métabolisme , Ganglions sensitifs des nerfs spinaux/métabolisme , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Rats , Névralgie/métabolisme , Névralgie/traitement médicamenteux , Névralgie/induit chimiquement , Mâle , Hyperalgésie/métabolisme , Hyperalgésie/induit chimiquement , Hyperalgésie/traitement médicamenteux , Capsaïcine/pharmacologie , Capsaïcine/analogues et dérivés , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques
16.
J Ethnopharmacol ; 334: 118464, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38908492

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY: This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS: Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS: Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1ß and TNF-α. CONCLUSIONS: Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.

17.
Genes (Basel) ; 15(6)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38927688

RÉSUMÉ

In humans, the transient receptor potential vanilloid 1 (TRPV1) gene is activated by exogenous (e.g., high temperatures, irritating compounds such as capsaicin) and endogenous (e.g., endocannabinoids, inflammatory factors, fatty acid metabolites, low pH) stimuli. It has been shown to be involved in several processes including nociception, thermosensation, and energy homeostasis. In this study, we investigated the association between TRPV1 gene variants, sensory perception (to capsaicin and PROP), and body composition (BMI and bioimpedance variables) in human populations. By comparing sequences deposited in worldwide databases, we identified two haplotype blocks (herein referred to as H1 and H2) that show strong stabilizing selection signals (MAF approaching 0.50, Tajima's D > +4.5) only in individuals with sub-Saharan African ancestry. We therefore studied the genetic variants of these two regions in 46 volunteers of sub-Saharan descent and 45 Italian volunteers (both sexes). Linear regression analyses showed significant associations between TRPV1 diplotypes and body composition, but not with capsaicin perception. Specifically, in African women carrying the H1-b and H2-b haplotypes, a higher percentage of fat mass and lower extracellular fluid retention was observed, whereas no significant association was found in men. Our results suggest the possible action of sex-driven balancing selection at the non-coding sequences of the TRPV1 gene, with adaptive effects on water balance and lipid deposition.


Sujet(s)
, Composition corporelle , Canaux cationiques TRPV , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Afrique subsaharienne , /génétique , Composition corporelle/génétique , Haplotypes , Polymorphisme de nucléotide simple , Sub-Sahariens (personnes) , Canaux cationiques TRPV/génétique
18.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Article de Anglais | MEDLINE | ID: mdl-38945884

RÉSUMÉ

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Sujet(s)
Tissu adipeux brun , Facteur neurotrophique dérivé du cerveau , Alimentation riche en graisse , Glucosides d'iridoïdes , Iridoïdes , Norépinéphrine , Obésité , Rat Sprague-Dawley , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Protéine-1 de découplage , Animaux , Mâle , Protéine-1 de découplage/métabolisme , Glucosides d'iridoïdes/pharmacologie , Obésité/métabolisme , Tissu adipeux brun/métabolisme , Tissu adipeux brun/effets des médicaments et des substances chimiques , Iridoïdes/pharmacologie , Norépinéphrine/métabolisme , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Facteur neurotrophique dérivé du cerveau/métabolisme , Rats , Agents antiobésité/pharmacologie , Marche à pied , Prise de poids/effets des médicaments et des substances chimiques , Conditionnement physique d'animal , Canaux cationiques TRPV
19.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38931423

RÉSUMÉ

TRPV1 channels are polymodal cation channels located predominantly on primary afferent neurons that are activated by inflammatory mediators, capsaicin (the active component in chili peppers), and noxious heat. TRPV1 channel antagonists are potential new analgesic agents, but their development has been hindered by the finding that they also produce loss of thermal homeostasis and response to noxious heat. Results from recent studies of the TRPV1 channel indicate that it might be possible to develop TRPV1 channel antagonists that inhibit pain without affecting noxious heat sensation. TRPV1 channels are also present in the central nervous system (CNS) and have been implicated in learning, memory, and behaviour. TRPV1 channel modulators have been proposed to have possible therapeutic potential in the treatment of neurological and psychiatric conditions. However, further understanding of the role of TRPV1 channels in the CNS is required before therapeutic advances in the treatment of neuropsychiatric conditions with TRPV1 channel modulators can be made.

20.
Front Neurol ; 15: 1403551, 2024.
Article de Anglais | MEDLINE | ID: mdl-38827576

RÉSUMÉ

Introduction: Prior investigations into post-COVID dysautonomia often lacked control groups or compared affected individuals solely to healthy volunteers. In addition, no data on the follow-up of patients with SARS-CoV-2-related autonomic imbalance are available. Methods: In this study, we conducted a comprehensive clinical and functional follow-up on healthcare workers (HCWs) with former mild COVID-19 (group 1, n = 67), to delineate the trajectory of post-acute autonomic imbalance, we previously detected in a case-control study. Additionally, we assessed HCWs for which a test before SARS-CoV-2 infection was available (group 2, n = 29), who later contracted SARS-CoV-2, aiming to validate findings from our prior case-control investigation. We evaluated autonomic nervous system heart modulation by means of time and frequency domain heart rate variability analysis (HRV) in HCWs during health surveillance visits. Short-term electrocardiogram (ECG) recordings, were obtained at about 6, 13 months and both at 6 and 13 months from the negative SARS-CoV-2 naso-pharyngeal swab (NPS) for group 1 and at about 1-month from the negative NPS for group 2. HCWs who used drugs, had comorbidities that affected HRV, or were hospitalized with severe COVID-19 were excluded. Results: Group 1 was split into three subgroups clinically and functionally followed at, about 6 months (subgroup-A, n = 17), 13 months (subgroup-B, n = 37) and both at 6 and 13 months (subgroup-C, n = 13) from the negative SARS-CoV-2 NPS. In subgroup-A, at 6-month follow-up compared with baseline, the spectral components in the frequency domain HRV parameters, showed an increase in normalized high frequency power (nHF) (t = 2.99, p = 0.009), a decrease in the normalized low frequency power (nLF) (t = 2.98, p = 0.009) and in the LF/HF ratio (t = 3.13, p = 0.006). In subgroup B, the comparison of the spectral components in the frequency domain HRV parameters, at 13-month follow-up compared with baseline, showed an increase in nHF (t = 2.54, p = 0.02); a decrease in nLF (t = 2.62, p = 0.01) and in the LF/HF ratio (t = 4.00, p = 0.0003). In subgroup-C, at both 6 and 13-month follow-ups, the spectral components in the frequency domain HRV parameters were higher than baseline in nHF (t = 2.64, p = 0.02 and (t = 2.13, p = 0.05, respectively); lower in nLF (t = 2.64, p = 0.02 and (t = 2.13, p = 0.05, respectively), and in LF/HF (t = 1.92, p = 0.08 and (t = 2.43, p = 0.03, respectively). A significant proportion of HCWs reported persistent COVID-19 symptoms at both the 6 and 13-month follow-ups, seemingly unrelated to cardiac autonomic balance. In group 2 HCWs, at 1-month follow-up compared with baseline, the spectral components in the frequency domain HRV parameters, showed a decrease in nHF (t = 2.19, p = 0.04); an increase in nLF (t = 2.15, p = 0.04) and in LF/HF (t = 3.49, p = 0.002). Conclusion: These results are consistent with epidemiological data suggesting a higher risk of acute cardiovascular complications during the first 30 days after COVID-19. The SARS-CoV-2 associated autonomic imbalance in the post-acute phase after recovery of mild COVID-19 resolved 6 months after the first negative SARS-CoV-2 NPS. However, a significant proportion of HCWs reported long-term COVID-19 symptoms, which dot not seems to be related to cardiac autonomic balance. Future research should certainly further test whether autonomic imbalance has a role in the mechanisms of long-COVID syndrome.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...