Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 265
Filtrer
1.
Bioanalysis ; 16(13): 681-691, 2024.
Article de Anglais | MEDLINE | ID: mdl-39254502

RÉSUMÉ

Aim: To improve the palatability and increase compliance in pediatric patients, different taste-masking technologies have been evaluated to support the NIH Pediatric Formulation Initiative.Methods: This bioavailability approach combined a juvenile porcine model which represented the pediatric population, and an advanced UHPLCMS/MS method. Juvenile pigs were administered with either commercial Tamiflu or its taste-masking formulation and plasma samples were obtained from 0 to 48 h. The mass spectrometer was operated in positive mode with electrospray ionization.Results: The bioavailability profiles were not significantly different between the two formulations which demonstrated that taste-masking by forming an ionic complex was a promising approach for formulation modification.Conclusion: The pre-clinical study revealed a promising model platform for developing and screening taste-masking formulations.


[Box: see text].


Sujet(s)
Biodisponibilité , Oséltamivir , Spectrométrie de masse en tandem , Goût , Animaux , Spectrométrie de masse en tandem/méthodes , Suidae , Oséltamivir/pharmacocinétique , Oséltamivir/sang , Oséltamivir/administration et posologie , Humains , Chromatographie en phase liquide à haute performance/méthodes , Chromatographie en phase liquide/méthodes , Enfant ,
2.
Article de Anglais | MEDLINE | ID: mdl-39316639

RÉSUMÉ

Many active pharmaceutical ingredients have a specific bitter taste. To enhance patient compliance and treatment efficacy, taste-masking agents are crucial in oral drug formulations. Confronting numerous bitter drug molecules with varied structures, the pharmaceutical field strives to explore and develop universal and effective masking approaches. Here, we reported sulfonated azocalix[4]arene (SAC4A), a universal supramolecular masking agent with deep cavity that provides stronger hydrophobic effect and larger interaction area during recognition, allowing high binding affinity to bitter drug molecules. Moreover, bitter drugs could deeply buried in the cavity, with the bitterness effectively masked. As a result, SAC4A can bind to 16 different bitter drugs with high affinities, encompassing alkaloids, flavonoids, terpenoids, and more, while maintaining high biocompatibility. As anticipated, SAC4A effectively masks the unpalatable bitter taste associated with these drugs. Consequently, SAC4A is a promising universal and effective supramolecular masking agent.

3.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39204099

RÉSUMÉ

Rhinacanthins, derived from Rhinacanthus nasutus, widely used in traditional medicine, exhibit antifungal, anticancer, antiviral, antibacterial, and antiplatelet aggregation effects. Recently, their anti-diabetic activity was confirmed, which makes them an interesting natural alternative in the therapy of the early stage of diabetes mellitus. The aim of this study was to demonstrate the possibility of formulating orodispersible tablets (ODTs) and orodispersible films (ODFs) containing rhinacanthin-rich extract (RRE). Tablets with 50 mg or 100 mg of RRE were produced by direct compression. ODFs were manufactured by casting of Lycoat RS 720 or polyvinyl alcohol solution with RRE and additional excipients. The mechanical properties and disintegration times of the prepared formulations were studied. The effectiveness of taste masking was analyzed with an electronic tongue system. Six months simplified stability studies were performed in conditions complying to ICH guidelines. Appropriate friability of ODTs was achieved, despite low tensile strength (0.45-0.62 MPa). All prepared ODFs successfully met the acceptance criteria regarding Young's modulus, tensile strength, and elongation at break. The observed variations in their mechanical properties were dependent on the type and quantity of polymers and plasticizers used. Disintegration time of ODTs ranged from 38.7 s to 54.2 s, while for ODFs from 24.2 to 40 s in the pharmacopoeial apparatus. Analyses made with the electronic tongue showed the significant taste-masking effect in both formulations. The addition of sucralose as a sweetener and menthol with mint flavor as a taste-masking agent was sufficient to mask an RRE's taste in the case of ODTs and ODFs. Stability studies of ODTs packed in the PVC/Alu blisters showed a decrease in the RRE content below 90% after 6 months. However, ODFs with PVA were physicochemically stable for 6 months while being stored in Alu/Alu sachets. Our study proved for the first time the possibility of the formulation of orodispersible dosage forms with RRE, characterized by good mechanical properties, disintegration time, and appropriate taste masking.

4.
Pharmaceutics ; 16(8)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39204372

RÉSUMÉ

A pediatric dosage form for crizotinib (Xalkori) was commercialized using quality-by-design principles in a material-sparing fashion. The dosage form consists of spherical multiparticulates (microspheres or pellets) that are coated and encapsulated in capsules for opening. The crizotinib (Xalkori)-coated pellet product is approved in the US for pediatric patients 1 year of age and older and young adults with relapsed or refractory, systemic anaplastic large cell lymphoma (ALCL) and unresectable, recurrent, or refractory inflammatory myofibroblastic tumor (IMT) that is ALK-positive. The product is also approved in the US for adult patients with non-small cell lung cancer (NSCLC) who are unable to swallow intact capsules. The lipid multiparticulate is composed of a lipid matrix, a dissolution enhancer, and an active pharmaceutical ingredient (API). The API, which remains crystalline, is embedded within the microsphere at a 60% drug loading in the uncoated lipid multiparticulate to enable dose flexibility. The melt spray congealing technique using a rotary atomizer is used to manufacture the lipid multiparticulate. Following melt spray congealing, a barrier coating is applied via fluid bed coating. Due to their particle size and content uniformity, this dosage form provides the dosing flexibility and swallowability needed for the pediatric population. The required pediatric dose is achieved by opening the capsules and combining doses of different encapsulated dose strengths, followed by administration of the multiparticulates directly to the mouth. The encapsulation process was optimized through equipment modifications and by using a design of experiments approach to understand the operating space. A limited number of development batches produced using commercial-scale equipment were leveraged to design, understand, and verify the manufacturing process space. The quality by design and material-sparing approach taken to design the melt spray congeal and encapsulation manufacturing processes resulted in a pediatric product with exceptional content uniformity (a 95% confidence and 99% probability of passing USP <905> content uniformity testing for future batches).

5.
Pharmaceutics ; 16(8)2024 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-39204386

RÉSUMÉ

The objective of the conducted research was to design 2 mm orodispersible minitablets of pediatric doses of hydrocortisone (0.5 mg; 1.0 mg) with desirable pharmaceutical properties and eliminate the sensation of a bitter taste using preparation of solid dispersion by ball mill. Hydrocortisone was selected as the model substance, as it is widely utilized in the pediatric population. ODMTs were prepared by compression (preceded by granulation) in a traditional single-punch tablet machine and evaluated using pharmacopoeial tests, DSC, and FTIR analysis. The methods used to evaluate the effectiveness of the taste-masking effect included in vivo participation of healthy volunteers, in vitro drug dissolution and utilization of an analytical device-"electronic tongue". The research employed a preclinical animal model to preliminary investigate the bioequivalence of the designed drug dosage form in comparison to reference products. The study confirmed the possibility of manufacturing good-quality hydrocortisone ODMTs with a taste-masking effect owing to the incorporation of a solid dispersion in the tablet mass.

6.
Pharmaceutics ; 16(8)2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39204444

RÉSUMÉ

Oral liquid prednisolone medications have poor acceptance among paediatric patients due to ineffective masking of the bitterness taste of prednisolone. This study aimed to develop a child-friendly prednisolone tablet using a patented chewable chocolate-based delivery system (CDS) previously applied successfully to mask the bitterness tastes of midazolam and tramadol. Prednisolone sodium phosphate (PSP) and prednisolone base (PB) CDS tablets were prepared, and the manufacturing process was optimised using a design of experiments (DoE) approach. Stability was assessed by quantifying residual drug content via a validated HPLC assay. A pilot randomised crossover taste study involving 25 young adult volunteers evaluated taste-masking effectiveness against Redipred™, a commercial oral PSP liquid medicine. The results showed that the PSP CDS tablet was chemically stable following storage for three months at ambient temperature, while the PB CDS tablet was unstable. The optimised PSP CDS tablet, manufactured at 50 °C with a stirring time of 26 h, was found to release over 80% of its drug load within 20 min in 0.1 M HCl and had a significantly better mean taste score compared to Redipred™ (7.08 ± 2.40 vs. 5.60 ± 2.33, p = 0.03). Fifty six percent of the participants preferred the PSP CDS tablet. In conclusion, compared to Redipred™, the CDS technology provided a more effective taste masking of PSP, potentially offering a child-friendly prednisolone formulation with improved compliance, dosing accuracy, and storage stability.

7.
Chem Pharm Bull (Tokyo) ; 72(7): 681-688, 2024.
Article de Anglais | MEDLINE | ID: mdl-39019599

RÉSUMÉ

Clarithromycin (CLA) is the preferred drug for treating respiratory infections in pediatric patients, but it has the drawbacks of extreme bitterness and poor water solubility. The purpose of this study was to improve solubility and mask the extreme bitterness of CLA. We use Hot Melt Extrusion (HME) to convert CLA and Eudragit® E100 into Solid Dispersion (SD). Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) were used to identify the crystalline form of the prepared SDs, which showed that the crystalline CLA was converted to an amorphous form. At the same time, an increase in dissolution rate was observed, which is one of the properties of SD. The results showed that the prepared SD significantly increased the dissolution rate of crystalline CLA. Subsequently, the SD of CLA was prepared into a dry suspension with excellent suspending properties and a taste-masking effect. The bitterness bubble chart and taste radar chart showed that the SD achieved the bitter taste masking of CLA. Principal components analysis (PCA) of the data generated by the electronic tongue showed that the bitter taste of CLA was significantly suppressed using the polymer Eudragit® E100. Subsequently, a dry suspension was prepared from the SD of CLA. In conclusion, this work illustrated the importance of HME for preparing amorphous SD of CLA, which can solve the problems of bitterness-masking and poor solubility. It is also significant for the development of compliant pediatric formulations.


Sujet(s)
Clarithromycine , Solubilité , Suspensions , Goût , Goût/effets des médicaments et des substances chimiques , Clarithromycine/composition chimique , Clarithromycine/pharmacologie , Suspensions/composition chimique , Technologie d'extrusion par fusion à chaud , Polymères/composition chimique , Préparation de médicament , Température élevée , Acrylates
8.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39065722

RÉSUMÉ

Mefloquine (MQ) is an antimalarial medication prescribed to treat or malaria prevention.. When taken by children, vomiting usually occurs, and new doses of medication frequently need to be taken. So, developing pediatric medicines using taste-masked antimalarial drug complexes is mandatory for the success of mefloquine administration. The hypothesis that binding mefloquine to an ion-exchange resin (R) could circumvent the drug's bitter taste problem was proposed, and solid-state 13C cross-polarization magic angle spinning (CPMAS) NMR was able to follow MQ-R mixtures through chemical shift and relaxation measurements. The nature of MQ-R complex formation could then be determined. Impedimetric electronic tongue equipment also verified the resinate taste-masking efficiency in vitro. Variations in chemical shifts and structure dynamics measured by proton relaxation properties (e.g., T1ρH) were used as probes to follow the extension of mixing and specific interactions that would be present in MQ-R. A significant decrease in T1ρH values was observed for MQ carbons in MQ-R complexes, compared to the ones in MQ (from 100-200 ms in MQ to 20-50 ms in an MQ-R complex). The results evidenced that the cationic resin interacts strongly with mefloquine molecules in the formulation of a 1:1 ratio complex. Thus, 13C CPMAS NMR allowed the confirmation of the presence of a binding between mefloquine and polacrilin in the MQ-R formulation studied.

9.
Sci Rep ; 14(1): 15983, 2024 07 10.
Article de Anglais | MEDLINE | ID: mdl-38987427

RÉSUMÉ

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Sujet(s)
Flavonoïdes , Hydroxybenzoates , Simulation de docking moléculaire , Récepteurs couplés aux protéines G , Récepteurs couplés aux protéines G/métabolisme , Humains , Flavonoïdes/composition chimique , Flavonoïdes/pharmacologie , Flavonoïdes/métabolisme , Hydroxybenzoates/pharmacologie , Hydroxybenzoates/composition chimique , Hydroxybenzoates/métabolisme , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Liaison aux protéines , Quercétine/pharmacologie , Quercétine/composition chimique , Quercétine/métabolisme , Flavanones/pharmacologie , Flavanones/composition chimique , Flavanones/métabolisme , Cellules HEK293
10.
AAPS PharmSciTech ; 25(6): 169, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39043992

RÉSUMÉ

Motion sickness also known as kinetosis is a condition in which there exists a disagreement between visually perceived movement and the vestibular system's sense of movement. Nausea, vomiting, dizziness, fatigue, and headache are the most common symptoms of motion sickness. This study mainly focuses on the taste masking of Promethazine Hydrochloride (PMZ) by inclusion complexation method, its formulation development in the chewing gum form by using directly compressible gum base HIG® and its quality and performance testing. Different molar ratios (1:1, 1:2, 1:3 and 1:4) of PMZ-cyclodextrin complexes were prepared by using ß-Cyclodextrin (ß-CD) as a taste masking agent. These complexes were evaluated for FTIR, DSC, % Entrapment Efficiency, % drug yield, and taste evaluation by E-Tongue. The optimized ratio was further evaluated by sophisticated analytical techniques such as Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). A central composite design (CCD) (3 ^2) was utilized to examine the effects of independent variables (amount of gum-X1 and amount of plasticizer-X2) on dependent variables (%CDRY1 and hardness Y2). The prepared gums were evaluated for drug content, organoleptic properties, in-vitro dissolution testing by fabricated disintegration apparatus, texture analysis, etc. The optimization statistics showed that on decreasing the amount of gum, in- vitro drug release increases and hardness decreases. The optimized batch MCG-2 of Promethazine MCG showed 92.34 ± 0.92% of drug release, whereas for marketed formulation (Phenergan®-25 mg) drug release value was 86.19 ± 1.88%. Results provided evidence that PMZ MCGs could be a better alternative to conventional tablet formulations with improved drug release, palatability and texture.


Sujet(s)
Antiémétiques , Gomme à mâcher , Prométhazine , Goût , Cyclodextrines bêta , Prométhazine/composition chimique , Prométhazine/administration et posologie , Cyclodextrines bêta/composition chimique , Goût/effets des médicaments et des substances chimiques , Antiémétiques/administration et posologie , Antiémétiques/composition chimique , Chimie pharmaceutique/méthodes , Libération de médicament , Diffraction des rayons X/méthodes , Solubilité , Préparation de médicament/méthodes , Humains , Mal des transports/prévention et contrôle
11.
Pharmaceutics ; 16(5)2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38794249

RÉSUMÉ

The bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well as to investigate the effect of the core type (PharSQ® Spheres M, CELPHERE™ CP-507, and NaCl) on the warfarin release from the Kollicoat® Smartseal taste-masking-coated pellets. The cores were successfully drug-loaded and coated in a fluid-bed coater with a Wurster insert. An increase in particle size and particle size distribution was observed by optical microscopy. In saliva-simulated pH, at the Kollicoat® Smartseal level of 2 mg/cm2, none of the pellets demonstrated drug release, confirming their efficient taste-masking. However, in a stomach-simulated pH, a faster drug release was observed from PharSQ® Spheres M- and CELPHERE™ CP-507-coated pellets in comparison with NaCl cores. Additional experiments allowed us to explain the slower drug release from NaCl-containing pellets because of the salting-out effect. Despite the successful taste masking, the drug release from pellets was relatively slow (not more than 91% per 60 min), allowing for further formulation improvements.

12.
Pharmaceutics ; 16(5)2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38794320

RÉSUMÉ

In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.

13.
Drug Dev Ind Pharm ; 50(6): 495-510, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38718260

RÉSUMÉ

OBJECTIVE: The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit® E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules. METHODS: In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit® E100). RESULTS: The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules in vitro by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations. CONCLUSION: In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.


Sujet(s)
Acétaminophène , Chitosane , Libération de médicament , Nanocomposites , Goût , Oxyde de zinc , Acétaminophène/administration et posologie , Acétaminophène/composition chimique , Acétaminophène/pharmacologie , Chitosane/composition chimique , Goût/effets des médicaments et des substances chimiques , Oxyde de zinc/composition chimique , Oxyde de zinc/administration et posologie , Oxyde de zinc/pharmacologie , Nanocomposites/composition chimique , Nanoparticules/composition chimique , Chimie pharmaceutique/méthodes , Polymères/composition chimique , Solubilité , Taille de particule , Préparation de médicament/méthodes , Humains , Concentration en ions d'hydrogène , Acrylates
14.
Acta Pharm ; 74(2): 177-199, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38815202

RÉSUMÉ

In the past, the administration of medicines for children mainly involved changes to adult dosage forms, such as crushing tablets or opening capsules. However, these methods often led to inconsistent dosing, resulting in under- or overdosing. To address this problem and promote adherence, numerous initiatives, and regulatory frameworks have been developed to develop more child-friendly dosage forms. In recent years, multiparticulate dosage forms such as mini-tablets, pellets, and granules have gained popularity. However, a major challenge that persists is effectively masking the bitter taste of drugs in such formulations. This review therefore provides a brief overview of the current state of the art in taste masking techniques, with a particular focus on taste masking by film coating. Methods for evaluating the effectiveness of taste masking are also discussed and commented on. Another important issue that arises frequently in this area is achieving sufficient dissolution of poorly water-soluble drugs. Since the simultaneous combination of sufficient dissolution and taste masking is particularly challenging, the second objective of this review is to provide a critical summary of studies dealing with multiparticulate formulations that are tackling both of these issues.


Sujet(s)
Préparation de médicament , Solubilité , Goût , Humains , Préparation de médicament/méthodes , Préparations pharmaceutiques/composition chimique , Préparations pharmaceutiques/administration et posologie , Formes posologiques , Chimie pharmaceutique/méthodes , Comprimés , Administration par voie orale , Enfant , Excipients/composition chimique , Libération de médicament
15.
Int J Pharm ; 658: 124191, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38701909

RÉSUMÉ

Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.


Sujet(s)
Acétaminophène , Libération de médicament , Poly(acides méthacryliques) , Goût , Acétaminophène/composition chimique , Acétaminophène/administration et posologie , Poly(acides méthacryliques)/composition chimique , Séchage par pulvérisation , Préparation de médicament/méthodes , Dérivés de l'hypromellose/composition chimique , Taille de particule , Solubilité , Dessiccation/méthodes , Résines acryliques
16.
Eur J Pharm Biopharm ; 199: 114294, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636884

RÉSUMÉ

Recently, APV organized in collaboration with Fette Compacting GmbH a course on current use and future opportunities of minitablets. The course including a workshop was attended by 30 participants and focused on the manufacturing, packaging, characterization and medical use of minitablets. It took place at the Headquarter of Fette Compacting GmbH in Schwarzenbek. This article provides an overview on the topics presented and discussed during the course.


Sujet(s)
Emballage de médicament , Comprimés , Humains , Emballage de médicament/méthodes , Technologie pharmaceutique/méthodes , Technologie pharmaceutique/tendances
17.
J Taibah Univ Med Sci ; 19(2): 252-262, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38616800

RÉSUMÉ

Objectives: Antibiotics are the most commonly administered medications among pediatric patients. However most of the time, accurate dose administration to children becomes a problem due to the extremely bitter taste. Cefpodoxime proxetil (CP) and roxithromycin (ROX) are antibiotics often prescribed to the pediatric population and have a bitter taste. Marketed formulations of these drugs are dry suspension and/or tablets. The lyophilization method involves various steps and thus is time consuming and expensive. The objective of this study was to mask the bitter taste of CP and ROX without compromising the solubility and drug release profile compared to marketed formulations, as well as to overcome the disadvantages associated with the currently used lyophilization technique. Methods: Hot melt extrusion (HME) technology was used to process CP and ROX individually with Eudragit E PO polymer. The extrudates obtained were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. The powdered extrudates were formulated as dispersible tablets and evaluated for in vitro and in vivo taste-masking efficiency. Results: The tablets prepared in this study showed comparable dissolution profiles but the taste-masking efficiency was significantly enhanced compared to the marketed tablets of CP and ROX. The results of in vivo human taste-masking evaluation were also in agreement with the in vitro taste-masking studies. Conclusion: The current work presents solvent-free, scalable, and continuous HME technology for addressing the bitter taste issues of CP and ROX. The disadvantages associated with the currently used lyophilization technique were overcome by developing the formulations using HME technology.

18.
Chem Pharm Bull (Tokyo) ; 72(3): 298-302, 2024.
Article de Anglais | MEDLINE | ID: mdl-38479857

RÉSUMÉ

The current study aimed to explore the impact of buffer species on the dissolution behavior of orally disintegrating tablets (ODT) containing a basic polymer and its influence on bioequivalence (BE) prediction. Fexofenadine hydrochloride ODT formulations were used as the model formulations, Allegra® as the reference formulation, and generic formulations A and B as the test formulations. Allegra®, generic A, and generic B are ODT formulations that contain aminoalkyl methacrylate copolymers E (Eudragit® E, EUD-E), a basic polymer commonly used to mask the bitter taste of drugs. Both generic A and generic B have been known to be bioequivalent to Allegra®. The dissolution tests were conducted using a compendial paddle, with either bicarbonate (10 mM, pH 6.8) or phosphate buffer (25 mM, pH 6.8) as the dissolution media. A floating lid was employed to cover the surface of the bicarbonate buffer to prevent volatilization. Results indicated that in phosphate buffer, the dissolution profiles of Allegra and generic B significantly varied from that of generic A, whereas in the bicarbonate buffer, the dissolution profiles of Allegra, generic A, and generic B were comparable. These findings suggest that the use of bicarbonate buffer may offer a more precise prediction of human bioequivalence compared to phosphate buffer.


Sujet(s)
Hydrogénocarbonates , Goût , Terfénadine/analogues et dérivés , Humains , Polymères , Solubilité , Comprimés , Phosphates , Administration par voie orale , Préparation de médicament/méthodes
19.
Pharmaceutics ; 16(2)2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38399226

RÉSUMÉ

Orally disintegrating granules (ODGs) are a pharmaceutical form commonly used for the administration of NSAIDs because of their easy assumption and fast dispersion. The development of ODGs is not easy for drugs like dexketoprofen trometamol (DXKT), which have a bitter and burning taste. In this work, high-shear coating (HSC) was used as an innovative technique for DKXT taste masking. This study focused on coating DXKT granules using the HSC technique with a low-melting lipid excipient, glyceryl distearate (GDS). The HSC technique allowed for the coating to be developed through the thermal rise resulting from the friction generated by the granules movement inside the equipment, causing the coating excipient to soften. The design of the experiment was used to find the best experimental coating conditions in order to gain effective taste masking by suitably reducing the amount of drug released in the oral cavity. The influence of the granule dimensions was also investigated. Coating effectiveness was evaluated using a simulated saliva dissolution test. It was found that low impeller speed (300 rpm) and a 20% coating excipient were effective in suitably reducing the drug dissolution rate and then in taste masking. The coated granules were characterized for their morphology and solid-state properties by SEM, BET, XRPD, DSC, and NIR analyses. A human taste panel test confirmed the masking of DXKT taste in the selected batch granules.

20.
AAPS PharmSciTech ; 25(3): 50, 2024 Feb 29.
Article de Anglais | MEDLINE | ID: mdl-38424241

RÉSUMÉ

The advancement in the formulation and characterization techniques have paved the path for development of new as well as modification of existing dosage forms. The present work explores the role of micro-computed tomography (micro-CT) as advanced characterization technique for multi-layered-coated pellets to ascertain the quality of coated pellets. The work further explored in-house e-tongue technique for understanding palatability of formulation in early stages of development thus by reducing clinical taste evaluation time. The developed multi-layered-coated pellets were characterized using microscopy (optical and electron microscopy). The obtained results demonstrated formation of spherical-shaped pellets with uniform coating. The uniform coating was further confirmed by results obtained from scanning electron microscopy (SEM) and cross-sectional SEM analysis, which showed visible difference in pellet surface before and after multi-layered coating. The micro-CT results confirmed the visible demarcation of layers (drug and polymer, i.e., hydroxypropyl methylcellulose (HPMC) and eudragit (EPO)) along with uniform thickness of various layering. The dissolution study of developed pellets suggested the role of layering EPO on drug release from pellets. The e-tongue analysis proved to be an excellent tool for early prediction of taste masking of drug via multi-layered pellets and can serve as potential platform for taste masking with high specificity. The overall results suggest the suitability of developed multi-layered platform as efficient dosage form (sprinkle) in pediatric/geriatric product development.


Sujet(s)
Technologie , Langue , Humains , Enfant , Sujet âgé , Microtomographie aux rayons X , Études transversales , Implant pharmaceutique , Microscopie électronique à balayage , Langue/imagerie diagnostique , Préparations à action retardée , Solubilité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE