Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 114
Filtrer
1.
ChemistryOpen ; : e202400130, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39086035

RÉSUMÉ

This article focuses on comparing the characteristics of cotton fabric dyed with Diospyros mollis extract (DME) solution and that of cotton fabric dyed with the reactive dye. The parameters of the cotton fabric after dyeing with both types of dyes were assessed, including color strength (K/S), structural morphology, infrared spectrum, antibacterial properties, UV resistance, color fastness to washing, rubbing, light, moisture absorption, breathability, and wastewater indices. The obtained results show that the K/S value of cotton fabric dyed with DME solution is slightly lower than that of cotton fabric dyed with the reactive dye, 18.52 and 19.36, respectively. The cotton fabric dyed with the reactive dye does not exhibit antibacterial activity against Escherichia coli and Staphylococcus aureus, whereas the antibacterial effectiveness against these bacteria for cotton fabric dyed with DME solution is 99.99 %. The UV protection capability of cotton fabric dyed with DME solution is superior to cotton fabric dyed with the reactive dye. The BOD/COD ratio of wastewater from the dyeing process with DME is higher than that of the reactive dye, with values of 0.70 and 0.32, respectively. The findings of this study indicate the superior ability of using DME solution as compared to the reactive dye, which is promising as a natural dye for fabric in medical applications.

2.
Sci Rep ; 14(1): 20074, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39209952

RÉSUMÉ

Textile dyes are frequently disposable in aqueous effluents, making it difficult to remove them from industrial effluents before their release to natural waters. This paper deals with the fabrication of cellulose-based adsorbents by reacting nanocelulose crystalline (nanocel) with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMSPEDA), forming the hybrid (silylpropyl)ethylenediamine@nanocellulose (SPEDA@nanocel), which was employed as adsorbent for the uptake of reactive yellow 2 dye (RY-2) from aqueous effluents. Characterisation of SPEDA@nanocel was carried out using FTIR, SEM-EDS, XRD, TGA, surface area, pHpzc, and hydrophobicity/hydrophilicity ratio (HI). Also, adsorption studies were thoroughly investigated. The effect of initial pH indicated that the maximum uptake of RY-2 takes place at pH 2, which is an indication of the electrostatic mechanism. The kinetic data carried out with 250 and 500 mg L-1 RY-2 with SPEDA@nanocel followed better the nonlinear fractional-like pseudo-first-order model. The t0.5 and t0.95 for the dye uptake were about 30 and 141 min, respectively. The equilibrium data from 10 to 45 °C indicated that the Liu isotherm model was the best-fitted isothermal model. The maximum sorption capacity attained was 112.3 mg g-1 at 45 °C. The thermodynamic data have shown that the equilibrium was favorable and endothermic, and the ΔH° was compatible with an electrostatic attraction between RY-2 and SPEDA@nanocel. Experiments of desorption of loaded adsorbent showed promising results for real applications since at least 5 adsorption/desorption cycles could be employed without significant changes in the recovery and with high precision.

3.
Sci Rep ; 14(1): 16188, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003364

RÉSUMÉ

This paper explores the photocatalytic degradation of Reactive Orange 16 (RO16) dye in textile wastewater employing a novel CuO@A-TiO2/Ro-TiO2 nanocomposite. The nanocomposite was synthesized via a hydrothermal technique, resulting in a monoclinic phase of leaf-shaped CuO loaded on a hexagonal wurtzite structure of rod-shaped ZnO, as confirmed by FE-SEM and XRD analyses. Optical experiments revealed band gap energies of 1.99 eV for CuO, 2.19 eV for ZnO, and 3.34 eV for the CuO@A-TiO2/Ro-TiO2 nanocomposite. Photocatalytic degradation experiments showcased complete elimination of a 100 mg/L RO16 solution (150 mL) after 120 min of UV light illumination and 100 min of sunlight illumination, emphasizing the nanocomposite's efficiency under both light sources. The study further delves into the application of the CuO@A-TiO2/Ro-TiO2 nanocomposite for the degradation of actual textile wastewater samples under sunlight irradiation. The results underscore the nanocomposite's remarkable efficacy in treating RO16 in textile wastewater, positioning it as a promising candidate for sustainable and efficient wastewater treatment applications. This research contributes valuable insights into the development of advanced photocatalytic materials for textile dye degradation in wastewater treatment.

5.
Polymers (Basel) ; 16(14)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39065306

RÉSUMÉ

Non-woven jute (NWJ) produced from carpet industry waste was oxidized by H2O2 or alkali-treated by NaOH and compared with water-washed samples. Changes in the structure of the NWJ, tracked by X-ray diffraction (XRD), showed that both chemical treatments disrupt hydrogen bond networks between cellulose Iß chains of the NWJ fibers. Thereafter, nano-carbon nitride (nCN) was impregnated, using a layer-by-layer technique, onto water-washed jute samples (nCN-Jw), NaOH-treated samples (nCN-Ja) and-H2O2 treated samples (nCN-Jo). Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra of the impregnated samples revealed that nCN anchors to the water-washed NWJ surface through hemicellulose and secondary hydroxyl groups of the cellulose. In the case of chemically treated samples, nCN is preferentially bonded to the hydroxymethyl groups of cellulose. The stability and reusability of prepared nCN-jute (nCN-J) samples were assessed by tracking the photocatalytic degradation of Acid Orange 7 (AO7) dye under simulated solar light irradiation. Results from up to ten consecutive photocatalytic cycles demonstrated varying degrees of effectiveness across different samples. nCN-Jo and nCN-Ja samples exhibited declining effectiveness over cycles, attributed to bond instability between nCN and jute. In contrast, the nCN-Jw sample consistently maintained high degradation rates over ten cycles, with a dye removal percentage constantly above 90%.

6.
Environ Sci Pollut Res Int ; 31(31): 43673-43686, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38904874

RÉSUMÉ

In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.


Sujet(s)
Carbonates , Fer , Eaux usées , Polluants chimiques de l'eau , Eaux usées/composition chimique , Fer/composition chimique , Polluants chimiques de l'eau/composition chimique , Carbonates/composition chimique , Catalyse , Agents colorants/composition chimique , Élimination des déchets liquides/méthodes , Peroxyde d'hydrogène/composition chimique
7.
Bioresour Technol ; 402: 130807, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38723727

RÉSUMÉ

The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.


Sujet(s)
Agaricus , Agents colorants , Agents colorants/composition chimique , Textiles , Dépollution biologique de l'environnement , Couleur , Industrie textile , Polluants chimiques de l'eau , Déchets industriels
8.
Toxics ; 12(3)2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38535927

RÉSUMÉ

Indigo carmine has a variety of uses in foods, textiles, medicine, pharmaceuticals, and cosmetics. There are studies reporting the toxic potential of indigo carmine on human health and the environment. In this study, we investigated the cytogenotoxic effects of indigo carmine using apical root cells of Allium cepa. Allium cepa bulbs were subjected to four treatments with indigo carmine (0.0032, 0.0064, 0.0125, and 0.2 mg/mL) and to ultrapure water as a control. After 5 days, root growth, root length, mitotic index, mitotic inhibition, chromosomal anomalies, and cell morphology were analyzed. According to our results, a decrease in root length and mitotic index was observed at all concentrations of indigo carmine. Additionally, several types of chromosomal abnormalities were observed, such as disturbed metaphase, sticky chain metaphase, anaphase bridge, and laggard chromosomes. Moreover, histological observation indicated that indigo carmine induces alterations in various components of root tip tissue, such as deformation and alteration of the cell wall, progressive condensation of chromatin, shrinkage of the nuclei, and an increase in the number of irregularly shaped nuclei and nuclear fragments. Our results indicate that the tested concentrations of indigo carmine may have toxic effects and raise concerns about its intensive use in many fields.

9.
Environ Sci Pollut Res Int ; 31(19): 28025-28039, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38523211

RÉSUMÉ

Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.


Sujet(s)
Cobalt , Composés du fer III , Oxygène singulet , Cobalt/composition chimique , Composés du fer III/composition chimique , Oxygène singulet/composition chimique , Superoxydes/composition chimique , Composés azoïques/composition chimique , Polluants chimiques de l'eau/composition chimique , Agents colorants/composition chimique , Fer/composition chimique , Peroxyde d'hydrogène/composition chimique
10.
Contact Dermatitis ; 90(5): 486-494, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38348533

RÉSUMÉ

BACKGROUND: Current frequency and features for positivity to textile dye mix (TDM) in Spain are unknown. OBJECTIVES: To study the frequency, clinical features and simultaneous positivity between TDM, para-phenylenediamine (PPD) and specific disperse dyes. MATERIALS AND METHODS: We analysed all consecutive patients patch-tested with TDM from the Spanish Contact Dermatitis Registry (REIDAC), from 1 January 2019 to 31 December 2022. Within this group, we studied all selected patients patch-tested with a textile dye series. RESULTS: Out of 6128 patients analysed, 3.3% were positive to the TDM and in 34% of them, the sensitization was considered currently relevant. TDM positivity was associated with working as a hairdresser/beautician and scalp, neck/trunk and arm/forearm dermatitis. From TDM-positive patients, 57% were positive to PPD. One hundred and sixty-four patients were patch-tested with the textile dye series. Disperse Orange 3 was the most frequent positive dye (16%). One of every six cases positive to any dye from the textile dye series would have been missed if patch-tested with the TDM alone. CONCLUSIONS: Positivity to TDM is common in Spain and often associated with PPD sensitization. TDM is a valuable marker of disperse dyes allergy that should be part of the Spanish and European standard series.


Sujet(s)
Eczéma de contact allergique , Humains , Eczéma de contact allergique/épidémiologie , Eczéma de contact allergique/étiologie , Espagne/épidémiologie , Textiles/effets indésirables , Tests épicutanés , Agents colorants/effets indésirables
11.
Water Environ Res ; 96(1): e10959, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38204323

RÉSUMÉ

The contamination of wastewater with textile dyes has emerged as a pressing environmental concern due to its persistent nature and harmful effects on ecosystems. Conventional dye treatment methods have proven inadequate in effectively breaking down complex dye molecules. However, a promising alternative for textile dye degradation lies in the utilization of white rot fungi, renowned for their remarkable lignin-degrading capabilities. This review provides a comprehensive analysis of the potential of white rot fungi in degrading textile dyes, with a particular focus on their ligninolytic enzymes, specifically examining the roles of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase in the degradation of lignin and their applications in textile dye degradation. The primary objective of this paper is to elucidate the enzymatic mechanisms involved in dye degradation, with a spotlight on recent research advancements in this field. Additionally, the review explores factors influencing enzyme production, including culture conditions and genetic engineering approaches. The challenges associated with implementing white rot fungi and their ligninolytic enzymes in textile dye degradation processes are also thoroughly examined. Textile dye contamination poses a significant environmental threat due to its resistance to conventional treatment methods. White rot fungi, known for their ligninolytic capabilities, offer an innovative approach to address this issue. The review delves into the intricate mechanisms through which white rot fungi and their enzymes, including LiP, MnP, and laccase, break down complex dye molecules. These enzymes play a pivotal role in lignin degradation, a process that can be adapted for textile dye removal. The review also emphasizes recent developments in this field, shedding light on the latest findings and innovations. It discusses how culture conditions and genetic engineering techniques can influence the production of these crucial enzymes, potentially enhancing their efficiency in textile dye degradation. This highlights the potential for tailored enzyme production to address specific dye contaminants effectively. The paper also confronts the challenges associated with integrating white rot fungi and their ligninolytic enzymes into practical textile dye degradation processes. These challenges encompass issues like scalability, cost-effectiveness, and regulatory hurdles. By acknowledging these obstacles, the review aims to pave the way for practical and sustainable applications of white rot fungi in wastewater treatment. In conclusion, this comprehensive review offers valuable insights into how white rot fungi and their ligninolytic enzymes can provide a sustainable solution to the urgent problem of textile dye-contaminated wastewater. It underscores the enzymatic mechanisms at play, recent research breakthroughs, and the potential of genetic engineering to optimize enzyme production. By addressing the challenges of implementation, this review contributes to the ongoing efforts to mitigate the environmental impact of textile dye pollution. PRACTITIONER POINTS: Ligninolytic enzymes from white rot fungi, like LiP, MnP, and laccase, are crucial for degrading textile dyes. Different dyes and enzymatic mechanisms is vital for effective wastewater treatment. Combine white rot fungi-based strategies with mediator systems, co-culturing, or sequential treatment approaches to enhance overall degradation efficiency. Emphasize the broader environmental impact of textile dye pollution and position white rot fungi as a promising avenue for contributing to mitigation efforts. This aligns with the overarching goal of sustainable wastewater treatment practices and environmental conservation. Consider scalability, cost-effectiveness, and regulatory compliance to pave the way for sustainable applications that can effectively mitigate the environmental impact of textile dye pollution.


Sujet(s)
Écosystème , Laccase , Lignine , Eaux usées , Agents colorants , Textiles , Champignons
12.
Braz J Microbiol ; 55(1): 471-485, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38052770

RÉSUMÉ

Microorganisms that inhabit the cold Antarctic environment can produce ligninolytic enzymes potentially useful in bioremediation. Our study focused on characterizing Antarctic bacteria and fungi from marine sediment samples of King George and Deception Islands, maritime Antarctica, potentially affected by hydrocarbon influence, able to produce enzymes for use in bioremediation processes in environments impacted with petroleum derivatives. A total of 168 microorganism isolates were obtained: 56 from sediments of King George Island and 112 from Deception Island. Among them, five bacterial isolates were tolerant to cell growth in the presence of diesel oil and gasoline and seven fungal were able to discolor RBBR dye. In addition, 16 isolates (15 bacterial and one fungal) displayed enzymatic emulsifying activities. Two isolates were characterized taxonomically by showing better biotechnological results. Psychrobacter sp. BAD17 and Cladosporium sp. FAR18 showed pyrene tolerance (cell growth of 0.03 g mL-1 and 0.2 g mL-1) and laccase enzymatic activity (0.006 UL-1 and 0.10 UL-1), respectively. Our results indicate that bacteria and fungi living in sediments under potential effect of hydrocarbon pollution may represent a promising alternative to bioremediate cold environments contaminated with polluting compounds derived from petroleum such as polycyclic aromatic hydrocarbons and dyes.


Sujet(s)
Microbiote , Pétrole , Hydrocarbures aromatiques polycycliques , Régions antarctiques , Dépollution biologique de l'environnement , Bioprospection , Hydrocarbures , Essence , Sédiments géologiques/microbiologie , Bactéries/génétique
13.
J Environ Manage ; 351: 119699, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38070426

RÉSUMÉ

Unchecked dye effluent discharge poses escalating environmental and economic concerns, especially in developing nations. While dyes are well-recognized water pollutants, the mechanisms of their environmental spread are least understood. Therefore, the present study examines the partitioning of Acid Orange 7 (AO7) and Crystal Violet (CV) dyes using water-sediment microcosms and reports that native microbes significantly affect AO7 decolorization and transfer. Both dyes transition from infused to pristine matrices, reaching equilibrium in a fortnight. While microbes influence CV partitioning, their role in decolorization is minimal, emphasizing their varied impact on the environmental fate of dyes. Metagenomic analyses reveal contrasting microbial composition between control and AO7-infused samples. Control water samples displayed a dominance of Proteobacteria (62%), Firmicutes (24%), and Bacteroidetes (9%). However, AO7 exposure led to Proteobacteria reducing to 57% and Bacteroidetes to 3%, with Firmicutes increasing to 34%. Sediment samples, primarily comprising Firmicutes (47%) and Proteobacteria (39%), shifted post-AO7 exposure: Proteobacteria increased to 53%, and Firmicutes dropped to 38%. At the genus level, water samples dominated by Niveispirillum (34%) declined after AO7 exposure, while Bacillus and Pseudomonas increased. Notably, Serratia and Sphingomonas, known for azo dye degradation, rose post-exposure, hinting at their role in AO7 decolorization. Conversely, sediment samples showed a decrease in the growth of Bacillus and an increase in that of Pseudomonas and Serratia. These findings emphasize the significant role of microbial communities in determining the environmental fate of dyes, providing insights on its environmental implications and management.


Sujet(s)
Benzènesulfonates , Chlorure de méthylrosanilinium , Microbiote , Agents colorants/composition chimique , Composés azoïques/composition chimique
14.
Environ Sci Pollut Res Int ; 30(58): 122601-122610, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37971586

RÉSUMÉ

Due to the excess release of hazardous pollutants to the environment, the quest for the synthesis of effective nanomaterials for wastewater treatment is never-ending. Present study reports the polyol synthesis of Ag NWs of ~ 85 nm diameter and average length of 4.08 µm using PVP and ethylene glycol. The experimental data on the methylene blue dye degradation substantiated the photocatalytic efficiency of Ag NWs (88% degradation in 120 min). Furthermore, the Ag NWs exhibited microbial load reducing property in air conditioner condensate water (ACW) within a time period of 60 min. Also, the anti-bacterial effect of Ag NWs was estimated using two human pathogenic bacterial strains, namely Staphylococcus aureus and Bacillus cereus. The antibacterial potential of Ag NWs against Staphylococcus aureus and Bacillus cereus was revealed significant with an inhibition zone size of 14 ± 0.1 mm and 9 ± 0.1 mm, respectively. Hence, the present work validates the potential efficiency of Ag NWs in the degradation of textile dyes and reduction of microbial population.


Sujet(s)
Nanostructures , Nanofils , Humains , Antibactériens , Textiles
15.
BMC Microbiol ; 23(1): 358, 2023 11 18.
Article de Anglais | MEDLINE | ID: mdl-37980459

RÉSUMÉ

BACKGROUND: The development of an environment-friendly nanomaterial with promising antimicrobial and antioxidant properties is highly desirable. The decolorization potentiality of toxic dyes using nanoparticles is a progressively serious worldwide issue. METHODS: The successful biosynthesis of zinc nanoparticles based on phosphates (ZnP-nps) was performed using the extracellular secretions of Aspergillus fumigatus. The antibacterial activity of the biosynthetic ZnP-nps was investigated against Gram-negative bacteria and Gram-positive bacteria using the agar diffusion assay method. The antioxidant property for the biosynthetic nanomaterial was evaluated by DPPH and H2O2 radical scavenging assay. RESULTS: Remarkable antibacterial and antiradical scavenging activities of ZnP-nps were observed in a dose-dependent manner. The minimum inhibitory concentration (MIC) for Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was 25 µg/ml, however, the MIC for Bacillus subtilis was 12.5 µg/ml. The maximum adsorptive performance of nanomaterial was respectively achieved at initial dye concentration of 200 mg/L and 150 mg/L using methylene blue (MB) and methyl orange (MO), where sorbent dosages were 0.5 g for MB and 0.75 g for MB; pH was 8.0 for MB and 4.0 for MO; temperature was 30 °C; contact time was 120 min. The experimental data was better obeyed with Langmuir's isotherm and pseudo-second-order kinetic model (R2 > 0.999). The maximum adsorption capacity (qmax) of MB and MO dyes on nanomaterial were 178.25 mg/g and 50.10 mg/g, respectively. The regenerated nanomaterial, respectively, persist > 90% and 60% for MB and MO after 6 successive cycles. The adsorption capacity of the prepared zinc phosphate nanosheets crystal toward MB and MO, in the present study, was comparable/superior with other previously engineered adsorbents. CONCLUSIONS: Based on the above results, the biosynthesized ZnP-nanosheets are promising nanomaterial for their application in sustainable dye decolorization processes and they can be employed in controlling different pathogenic bacteria with a potential application as antiradical scavenging agent. Up to our knowledge, this is probably the first study conducted on the green synthesis of ZnP-nanosheets by filamentous fungus and its significant in sustainable dye decolorization.


Sujet(s)
Antioxydants , Nanoparticules métalliques , Antioxydants/pharmacologie , Eaux usées , Aspergillus fumigatus , Nanoparticules métalliques/composition chimique , Peroxyde d'hydrogène , Zinc/pharmacologie , Antibactériens/pharmacologie , Antibactériens/composition chimique , Phosphates , Agents colorants , Adsorption
16.
J Xenobiot ; 13(3): 509-528, 2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37754845

RÉSUMÉ

Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).

17.
Mol Biol Rep ; 50(11): 8901-8914, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37698753

RÉSUMÉ

BACKGROUND: Synthetic dyes are one of the main pollutants in the textile industry and bioremediation is considered as an environmentally friendly method to degrade them. Soil microbial consortia (MCs) are reported having the potential of decolorizing most of textile dyes. This study aimed at evaluating dye-degrading ability of MCs developed from fungi and bacteria. METHODS AND RESULTS: Fungi and bacteria were isolated from the soil samples obtained from textile waste dumping site at Horana industrial zone, Sri Lanka and were screened for crystal violet (CV) and congo red (CR) dyes to develop MCs. Decolorization assay was performed for MCs along with individual isolates under variable pH levels. Metabolized products were characterized to confirm the biodegradation. A. tamari (F5) and P. putida (B3) significantly (P < 0.05) decolorized both dyes. All the MCs showed higher decolorization percentages over the individual microorganisms. Neutral pH (pH 7) was the optimum pH for the decolorization of both dyes by individual isolates and the percentages were significantly changed under the acidic and basic pH levels. However, decolorization ability by all MCs was not significantly changed with pH. Consortium with A. tamari - P. putida significantly (P < 0.05) decolourized both dyes under optimum pH 7. CONCLUSION: All MCs showed better pH tolerance in degrading CV and CR. Thus, it can be concluded that the selected MC with A. tamari - P. putida can degrade CV and CR textile dyes efficiently into non-toxic compounds against plants under neutral pH. Degradation and decolorization of textile azo dyes by effective fungal-bacterial consortium.


Sujet(s)
Composés azoïques , Agents colorants , Composés azoïques/métabolisme , Agents colorants/composition chimique , Rouge Congo/métabolisme , Dépollution biologique de l'environnement , Bactéries/métabolisme , Textiles , Sol
18.
Environ Technol ; 44(21): 3294-3315, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37376879

RÉSUMÉ

Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.


Sujet(s)
Eaux usées , Polluants chimiques de l'eau , Eaux d'égout/composition chimique , Agents colorants , Oxydoréduction , Textiles , Polluants chimiques de l'eau/composition chimique
19.
3 Biotech ; 13(6): 165, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37162807

RÉSUMÉ

The current physicochemical methods for decolorizing toxic synthetic dyes are not sustainable to halt the environmental damage as they are expensive and often produce concentrated sludge, which may lead to secondary disposal problems. Biocatalysis (microbes and/or their enzymes) is a cost-effective, versatile, energy-saving and clean alternative. The most common enzymes involved in dye degradation are laccases, azoreductases and peroxidases. Toxic dyes could be converted into less harmful byproducts through the combined action of many enzymes or the utilization of whole cells. The action of whole cells to treat dye effluents is either by biosorption or degradation (aerobic or anaerobic). Using immobilized cells or enzymes will offer advantages such as superior stability, persistence against harsh environmental conditions, reusability and longer half-lives. This review envisages the recent strategies of immobilization and bioreactor considerations with the immobilized system as the effective treatment of textile dye effluents. Packed bed reactors are the most popular heterogeneous biocatalytic reactors for dye decolorization due to their efficiency and cost-effectiveness.

20.
Environ Sci Pollut Res Int ; 30(30): 74877-74888, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37209329

RÉSUMÉ

Axial DC magnetic field-assisted multi-capillary underwater air bubble discharge plasma jet has been used to study the productions of reactive oxygen species. Analyses of optical emission data revealed that the rotational (Tr) and vibrational temperatures (Tv) of plasma species slightly increased with magnetic field strength. The electron temperature (Te) and density (ne) increased almost linearly with magnetic field strength. Te increased from 0.53 to 0.59 eV, whereas ne increased from 1.03 × 1015 cm-3 to 1.33 × 1015 cm-3 for B = 0 to B = 374 mT, respectively. Analytical results from the plasma treated water provided that the electrical conductivity (EC), oxidative reduction potential (ORP), and the concentrations of O3 and H2 O2 enhanced from 155 to 229 µS cm-1, 141 to 17 mV, 1.34 to 1.92 mg L-1, and 5.61 to 10.92 mg L-1 due to the influence of axial DC magnetic field, while [Formula: see text] reduced from 5.10 to 3.93 for 30 min treatment of water with B = 0 and B = 374 mT, respectively. The model wastewater prepared with Remazol brilliant blue textile dye and the plasma treated wastewater studied by optical absorption spectrometer, Fourier transform infrared spectrometer, and gas chromatography mass spectrometer. The results show that the decolorization efficiency increased ~ 20% after 5 min treatment for the maximum B = 374 mT with respect to zero-magnetic field and, power consumption, and electrical energy cost reduced ~ 6.3% and ~ 4.5%, respectively, due to the maximum assisted axial DC magnetic field strength of 374 mT.


Sujet(s)
Eaux usées , Eau , Textiles , Agents colorants/métabolisme , Industrie textile
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE