Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 387
Filtrer
1.
Kaohsiung J Med Sci ; 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38970443

RÉSUMÉ

Recent studies have identified a correlation between chronic viral hepatitis and cognitive impairment, yet the underlying mechanisms remain unclear. This study investigated the influence of TGFB1 genetic polymorphisms on cognitive function in individuals with and without hepatitis infections, hypothesizing that these polymorphisms and the viral hepatitis-induced inflammatory environment interact to affect cognitive abilities. Participants (173 with viral hepatitis and 258 healthy controls) were recruited. Genotyping of TGFB1 SNPs was performed using the C2-58 Axiom Genome-Wide TWB 2.0 Array Plate. Cognitive function was assessed using the MMSE and MoCA tests. Our results showed that healthy individuals carrying the C allele of rs2241715 displayed better performance in sentence writing (p = 0.020) and language tasks (p = 0.022). Notably, viral hepatitis was found to moderate the impact of the rs2241715 genotype on language function (p = 0.002). Similarly, those carrying the T allele of rs10417924 demonstrated superior orientation to time (p = 0.002), with viral hepatitis modifying the influence of the SNP on this particular cognitive function (p = 0.010). Our findings underscore the significant role of TGFß1 in cognitive function and the moderating impact of viral hepatitis on TGFB1 SNP effects. These findings illuminate the potential of TGFB1 as a therapeutic target for cognitive impairment induced by viral hepatitis, thus broadening our understanding of TGFß1 functionality in the pathogenesis of neurodegeneration.

2.
Article de Anglais | MEDLINE | ID: mdl-38971921

RÉSUMÉ

Resistant hypertension (RH) poses a significant health challenge, yet its underlying pathogenesis remains unclear. This study employs untargeted proteomic techniques to analyze the plasma of patients with RH and controlled hypertension (CH), identifying 157 differentially expressed proteins, with TGFB1 emerging as a key candidate. Through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein-Protein Interaction Networks (PPI) topological analysis, TGFB1's differential regulation in RH is established. ELISA verification solidifies TGFB1's role, marking it as a potential biological target for early RH diagnosis and treatment. The study underscores the importance of proteomic approaches in enhancing our understanding of RH and improving therapeutic strategies. These findings carry implications for advancing RH diagnostics and treatment modalities, addressing a critical gap in current knowledge.

3.
F1000Res ; 13: 120, 2024.
Article de Anglais | MEDLINE | ID: mdl-38988879

RÉSUMÉ

Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor ß receptor (TGFßR) on fibroblast cell states.


Sujet(s)
Fibroblastes , Homéostasie , Récepteur facteur croissance fibroblaste , Récepteurs aux facteurs de croissance dérivés des plaquettes , Humains , Fibroblastes/métabolisme , Récepteurs aux facteurs de croissance dérivés des plaquettes/métabolisme , Animaux , Récepteur facteur croissance fibroblaste/métabolisme , Récepteurs TGF-bêta/métabolisme
4.
Mol Ther ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38910328

RÉSUMÉ

Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.

5.
Biomed Pharmacother ; 177: 116983, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38908205

RÉSUMÉ

The induction of immunological tolerance is a promising strategy for managing autoimmune diseases, allergies, and transplant rejection. Tregitopes, a class of peptides, have emerged as potential agents for this purpose. They activate regulatory T cells, which are pivotal in reducing inflammation and promoting tolerance, by binding to MHC II molecules and facilitating their processing and presentation to Treg cells, thereby encouraging their proliferation. Moreover, Tregitopes influence the phenotype of antigen-presenting cells by attenuating the expression of CD80, CD86, and MHC class II while enhancing ILT3, resulting in the inhibition of NF-kappa B signaling pathways. Various techniques, including in vitro and in silico methods, are applied to identify Tregitope candidates. Currently, Tregitopes play a vital role in balancing immune activation and tolerance in clinical applications such as Pompe disease, diabetes-related antigens, and the prevention of spontaneous abortions in autoimmune diseases. Similarly, Tregitopes can induce antigen-specific regulatory T cells. Their anti-inflammatory effects are significant in conditions such as autoimmune encephalomyelitis, inflammatory bowel disease, and Guillain-Barré syndrome. Additionally, Tregitopes have been leveraged to enhance vaccine design and efficacy. Recent advancements in understanding the potential benefits and drawbacks of IVIG and the discovery of the function and mechanism of Tregitopes have introduced Tregitopes as a popular option for immune system modulation. It is expected that they will bring about a significant revolution in the management and treatment of autoimmune and immunological diseases. This article is a comprehensive review of Tregitopes, concluding with the potential of these epitopes as a therapeutic avenue for immunological disorders.

6.
Adv Exp Med Biol ; 1441: 145-153, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884709

RÉSUMÉ

The development of the inflow tract is undoubtedly one of the most complex remodeling events in the formation of the four-chambered heart. It involves the creation of two separate atrial chambers, the formation of an atrial/atrioventricular (AV) septal complex, the incorporation of the caval veins and coronary sinus into the right atrium, and the remodeling events that result in pulmonary venous return draining into the left atrium. In these processes, the atrioventricular mesenchymal complex, consisting of the major atrioventricular (AV) cushions, the mesenchymal cap on the primary atrial septum (pAS), and the dorsal mesenchymal protrusion (DMP), plays a crucial role.


Sujet(s)
Atrium du coeur , Animaux , Humains , Sinus coronaire/embryologie , Sinus coronaire/malformations , Coeur/embryologie , Mésoderme/embryologie , Veines pulmonaires/malformations
7.
J Transl Med ; 22(1): 548, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849800

RÉSUMÉ

BACKGROUND: Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS: To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS: Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION: Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.


Sujet(s)
Évolution de la maladie , Gammapathie monoclonale de signification indéterminée , Myélome multiple , Humains , Myélome multiple/immunologie , Myélome multiple/anatomopathologie , Gammapathie monoclonale de signification indéterminée/immunologie , Protéomique , Mâle , Femelle , Biosynthèse des protéines , Adulte d'âge moyen , Sujet âgé , Analyse de regroupements , Plasmocytes/immunologie , Plasmocytes/anatomopathologie , Plasmocytes/métabolisme , Transduction du signal , Protéome/métabolisme , Contrôle de qualité
8.
Elife ; 132024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874379

RÉSUMÉ

Developmental signaling pathways associated with growth factors such as TGFb are commonly dysregulated in melanoma. Here we identified a human TGFb enhancer specifically activated in melanoma cells treated with TGFB1 ligand. We generated stable transgenic zebrafish with this TGFb Induced Enhancer driving green fluorescent protein (TIE:EGFP). TIE:EGFP was not expressed in normal melanocytes or early melanomas but was expressed in spatially distinct regions of advanced melanomas. Single-cell RNA-sequencing revealed that TIE:EGFP+ melanoma cells down-regulated interferon response while up-regulating a novel set of chronic TGFb target genes. ChIP-sequencing demonstrated that AP-1 factor binding is required for activation of chronic TGFb response. Overexpression of SATB2, a chromatin remodeler associated with tumor spreading, showed activation of TGFb signaling in early melanomas. Confocal imaging and flow cytometric analysis showed that macrophages localize to TIE:EGFP+ regions and preferentially phagocytose TIE:EGFP+ melanoma cells compared to TIE:EGFP- melanoma cells. This work identifies a TGFb induced immune response and demonstrates the need for the development of chronic TGFb biomarkers to predict patient response to TGFb inhibitors.


Sujet(s)
Animal génétiquement modifié , Mélanome , Transduction du signal , Danio zébré , Mélanome/génétique , Mélanome/immunologie , Mélanome/métabolisme , Mélanome/anatomopathologie , Animaux , Humains , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Facteur de croissance transformant bêta-1/métabolisme , Lignée cellulaire tumorale , Gènes rapporteurs , Facteur de croissance transformant bêta/métabolisme , Régulation de l'expression des gènes tumoraux
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38732119

RÉSUMÉ

High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 µg/mL). We found CSC (10-3 or 10 µg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.


Sujet(s)
Cellules épithéliales , Transition épithélio-mésenchymateuse , Facteur de croissance transformant bêta , Humains , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Femelle , Facteur de croissance transformant bêta/métabolisme , Cellules épithéliales/métabolisme , Cellules épithéliales/virologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Récepteurs à activité tyrosine kinase/métabolisme , Récepteurs à activité tyrosine kinase/génétique , Col de l'utérus/anatomopathologie , Col de l'utérus/métabolisme , Col de l'utérus/virologie , Fumée/effets indésirables , Infections à papillomavirus/métabolisme , Infections à papillomavirus/virologie , Infections à papillomavirus/anatomopathologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Mouvement cellulaire/effets des médicaments et des substances chimiques , Tumeurs du col de l'utérus/virologie , Tumeurs du col de l'utérus/anatomopathologie , Tumeurs du col de l'utérus/métabolisme , Tumeurs du col de l'utérus/étiologie , Papillomavirus humain de type 16/pathogénicité , Nicotiana/effets indésirables , Virus des Papillomavirus humains
10.
Bull Exp Biol Med ; 176(5): 603-606, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38730107

RÉSUMÉ

Polymorphism of genes of transforming growth factor TGFB and its receptors (TGFBRI, TGFBRII, and TGFBRIIII) in patients with primary open-angle glaucoma was analyzed. The frequency of the TGFBRII CC genotype in patients is increased relative to the control group (OR=6.10, p=0.0028). Heterozygosity in this polymorphic position is reduced (OR=0.18, p=0.0052). As the effects of TGF-ß is mediated through its receptors, we analyzed complex of polymorphic variants of the studied loci in the genome of patients. Two protective complexes consisting only of receptor genes were identified: TGFBRI TT:TGFBRII CG (OR=0.10, p=0.02) and TGFBRII CG:TGFBRIII CG (OR=0.09, p=0.01). The study showed an association of TGFBRII polymorphism with primary open-angle glaucoma and the need to study functionally related genes in the development of the disease, which should contribute to its early diagnosis and prevention.


Sujet(s)
Glaucome à angle ouvert , Humains , Glaucome à angle ouvert/génétique , Femelle , Mâle , Adulte d'âge moyen , Sibérie , Sujet âgé , Polymorphisme de nucléotide simple/génétique , Prédisposition génétique à une maladie/génétique , Récepteurs TGF-bêta/génétique , Fréquence d'allèle/génétique , Récepteur de type II du facteur de croissance transformant bêta/génétique , Études cas-témoins , Génotype , Facteur de croissance transformant bêta/génétique , Récepteur de type I du facteur de croissance transformant bêta/génétique , Polymorphisme génétique/génétique
11.
Cells Dev ; : 203929, 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38810946

RÉSUMÉ

Fas ligand (FasL, CD178) belongs to classical apoptotic molecules, however, recent evidence expands the spectrum of FasL functions into non-apoptotic processes which also applies for the bone. Tgfb subfamily members (Tgfb1, Tgfb2, Tgfb3) represent major components in osteogenic pathways and extracellular matrix. Their possible association with FasL has not yet been investigated but can be postulated. To test such a hypothesis, FasL deficient (gld) calvaria-derived cells were examined with a focus on the expression of Tgfb receptor ligands. The qPCR analysis revealed significantly increased expression of Tgfb1, Tgfb2 and Tgfb3 in gld cells. To check the vice versa effect, the gld cells were stimulated by soluble FasL. As a consequence, a dramatic decrease in expression levels of all three ligands was observed. This phenomenon was also confirmed in IDG-SW3 (osteoblastic cells of endochondral origin). TFLink gateway identified Fosl2 as an exclusive candidate of FasL capable to impact expression of all three Tgfb ligands. However, Fosl2 siRNA did not cause any significant changes in expression of Tgfb ligands. Therefore, the upregulation of the three ligands is likely to occur separately. In this respect, we tested the only exclusive candidate transcription factor for Tgfb3, Prrx1. Additionally, an overlapping candidate for Tgfb1 and Tgfb2, Mef2c capable to modulate expression of sclerostin, was examined. Prrx1 as well as Mef2c were found upregulated in gld samples and their expression decreased after addition of FasL. The same effect of FasL treatment was observed in the IDG-SW3 model. Taken together, FasL deficiency causes an increase in the expression of Tgfb ligands and stimulation by FasL reduces Tgfb expression in osteoblastic cells. The candidates mediating the effect comprise Prrx1 for Tgfb3 and Mef2c for Tgfb1/2. These results indicate FasL as a novel cytokine interfering with Tgfb signaling and thus the complex osteogenic network. The emerging non-apoptotic functions of FasL in bone development and maintenance should also be considered in treatment strategies such as the anti-osteoporotic factor.

12.
Cells ; 13(7)2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38607065

RÉSUMÉ

(1) Background: Our previous data indicated that disturbance of the Transforming Growth Factor beta (TGFB) signaling pathway via its Type-2 Receptor (TGFBR2) can cause a Corneal Ectasia (CE)-like phenotype. The purpose of this study is to elucidate whether the SMAD4-dependent signaling pathway is involved in the TGFBR2-related CE-like pathogenesis. (2) Methods: Smad4 was designed to be conditionally knocked out from keratocytes. Novel triple transgenic mice, KerartTA; Tet-O-Cre; Smad4flox/flox (Smad4kera-cko), were administered with doxycycline (Dox). Optical Coherence Tomography (OCT) was performed to examine Central Corneal Thickness (CCT), Corneal Radius, Anterior Chamber and CE-like phenotype and compared to the littermate Control group (Smad4Ctrl). (3) Results: The OCT revealed normal cornea in the Smad4Ctrl and a CE-like phenotype in the Smad4kera-cko cornea, in which the overall CCT in Smad4kera-cko was thinner than that of Smad4Ctrl at P42 (n = 6, p < 0.0001) and showed no significant difference when compared to that in Tgfbr2kera-cko. Furthermore, the measurements of the Anterior Chamber and Corneal Radius indicated a substantial ectatic cornea in the Smad4kera-cko compared to Smad4Ctrl. The H&E staining of Smad4kera-cko mimics the finding in the Tgfbr2kera-cko. The positive immunostaining of cornea-specific marker K12 indicating the cell fate of cornea epithelium remained unchanged in Smad4kera-cko and the Proliferating Cell Nuclear Antigen (PCNA) immunostaining further indicated an enhanced proliferation in the Smad4kera-cko. Both immunostainings recapitulated the finding in Tgfbr2kera-cko. The Masson's Trichrome staining revealed decreased collagen formation in the corneal stroma from both Smad4kera-cko and Tgfbr2kera-cko. The collagen type 1 (Col1a1) immunostaining further confirmed the reduction in collagen type 1 formation in Smad4kera-cko. (4) Conclusions: The aforementioned phenotypes in the Smad4kera-cko strain indicated that the SMAD4-dependent signaling pathway is involved in the pathogenesis of the CE-like phenotype observed in Tgfbr2kera-cko.


Sujet(s)
Maladies de la cornée , Souris , Animaux , Récepteur de type II du facteur de croissance transformant bêta/génétique , Maladies de la cornée/anatomopathologie , Souris transgéniques , Transduction du signal , Phénotype , Collagène
13.
Calcif Tissue Int ; 2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38553634

RÉSUMÉ

There are no licensed treatments for children with osteogenesis imperfecta. Children currently receive off-label treatment with bisphosphonates, without any consistent approach to dose, drug or route of administration. Meta-analyses suggest that anti-fracture efficacy of such interventions is equivocal. New therapies are undergoing clinical trials, and it is likely that one or more will receive marketing authorisation within the next three to five years. The long-term outcome from such interventions will need to be studied carefully well beyond the period over which the clinical trials are conducted, and a consistent approach to the collection of data in this regard will be needed as a major collaborative effort.

14.
Brain Sci ; 14(3)2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38539649

RÉSUMÉ

Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.

15.
Biochem Biophys Res Commun ; 703: 149686, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38367513

RÉSUMÉ

Transforming growth factor ß1 (TGFB1) refers to a pleiotropic cytokine exerting contrasting roles in hematopoietic stem cells (HSCs) functions in vitro and in vivo. However, the understanding of hematopoiesis in vivo, when TGFB1 is constantly deactivated, is still unclear, mainly due to significant embryonic lethality and the emergence of a fatal inflammatory condition, which makes doing these investigations challenging. Our study aims to find the specific role of TGFB1 in regulating hematopoiesis in vivo. We engineered mice strains (Vav1 or Mx1 promoter-driven TGFB1 knockout) with conditional knockout of TGFB1 to study its role in hematopoiesis in vivo. In fetal and adult hematopoiesis, TGFB1 KO mice displayed deficiency and decreased self-renewal capacity of HSCs with myeloid-biased differentiation. The results were different from the regulating role of TGFB1 in vitro. Additionally, our results showed that TGFB1 deficiency from fetal hematopoiesis stage caused more severe defect of HSCs than in the adult stage. Mechanistically, our findings identified TGFB1-SOX9-FOS/JUNB/TWIST1 signal axis as an essential regulating pathway in HSCs homeostasis. Our study may provide a scientific basis for clinical HSC transplantation and expansion.


Sujet(s)
Hématopoïèse , Cellules souches hématopoïétiques , Facteur de croissance transformant bêta-1 , Animaux , Souris , Différenciation cellulaire , Cytokines/métabolisme , Hématopoïèse/génétique , Cellules souches hématopoïétiques/cytologie , Cellules souches hématopoïétiques/physiologie , Facteur de croissance transformant bêta-1/métabolisme
16.
J Hepatol ; 80(6): 941-956, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38365182

RÉSUMÉ

BACKGROUND & AIMS: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.


Sujet(s)
Matrice extracellulaire , Cellules étoilées du foie , Triacylglycerol lipase , Cirrhose du foie , Protéines membranaires , Facteur de croissance transformant bêta-1 , Humains , Cellules étoilées du foie/métabolisme , Cellules étoilées du foie/anatomopathologie , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Matrice extracellulaire/métabolisme , Matrice extracellulaire/génétique , Triacylglycerol lipase/génétique , Triacylglycerol lipase/métabolisme , Cirrhose du foie/génétique , Cirrhose du foie/anatomopathologie , Cirrhose du foie/métabolisme , Facteur de croissance transformant bêta-1/métabolisme , Facteur de croissance transformant bêta-1/génétique , Cellules cultivées , Foie/anatomopathologie , Foie/métabolisme , Transduction du signal/génétique , Obésité/génétique , Obésité/métabolisme , Mâle , Acyltransferases , Calcium-independent phospholipase A2
17.
BMC Cancer ; 24(1): 122, 2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38267923

RÉSUMÉ

BACKGROUND: Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer. METHODS: The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility. RESULTS: We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer. CONCLUSIONS: In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.


Sujet(s)
Tumeurs de l'ovaire , Femelle , Humains , Tumeurs de l'ovaire/génétique , Régulation positive , Facteur de croissance transformant bêta-1/génétique , Processus néoplasiques , Transduction du signal , Prolifération cellulaire/génétique , ARN messager , Protéine Smad2/génétique , SKP cullin F-box protein ligases
18.
Biomedicines ; 12(1)2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38255296

RÉSUMÉ

This hypothesis-generating study characterized the mRNA expression profiles and prognostic impacts of antigen-presenting cell (APC) markers (CD14, CD163, CD86, and ITGAX/CD11c) in pediatric brainstem diffuse midline glioma (pbDMG) tumors. We also assessed the mRNA levels of two therapeutic targets, transforming growth factor beta 2 (TGFB2) and interferon gamma receptor 2 (IFNGR2), for their biomarker potentials in these highly aggressive pbDMG tumors. The expressions of CD14, CD163, and ITGAX/CD11c mRNAs exhibited significant decreases of 1.64-fold (p = 0.037), 1.75-fold (p = 0.019), and 3.33-fold (p < 0.0001), respectively, in pbDMG tumors relative to those in normal brainstem/pons samples. The pbDMG samples with high levels of TGFB2 in combination with low levels of APC markers, reflecting the cold immune state of pbDMG tumors, exhibited significantly worse overall survival outcomes at low expression levels of CD14, CD163, and CD86. The expression levels of IFNGR2 and TGFB2 (1.51-fold increase (p = 0.002) and 1.58-fold increase (p = 5.5 × 10-4), respectively) were significantly upregulated in pbDMG tumors compared with normal brainstem/pons samples. We performed multivariate Cox proportional hazards modelling that showed TGFB2 was a prognostic indicator (HR for patients in the TGFB2high group of pbDMG patients = 2.88 (1.12-7.39); p = 0.028) for poor overall survival (OS) and was independent of IFNGR2 levels, the age of the patient, and the significant interaction effect observed between IFNGR2 and TGFB2 (p = 0.015). Worse survival outcomes in pbDMG patients when comparing high versus low TGFB2 levels in the context of low IFNGR2 levels suggest that the abrogation of the TGFB2 mRNA expression in the immunologically cold tumor microenvironment can be used to treat pbDMG patients. Furthermore, pbDMG patients with low levels of JAK1 or STAT1 mRNA expression in combination with high levels of TGFB2 also exhibited poor OS outcomes, suggesting that the inclusion of (interferon-gamma) IFN-γ to stimulate and activate JAK1 and STAT1 in anti-tumor APC cells present the brainstem TME can enhance the effect of the TGFB2 blockade.

19.
Exp Cell Res ; 435(2): 113930, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38237846

RÉSUMÉ

The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.


Sujet(s)
Tumeurs du sein , Fibroblastes associés au cancer , Animaux , Femelle , Humains , Souris , Tumeurs du sein/métabolisme , Fibroblastes associés au cancer/anatomopathologie , Cytokines/génétique , Cytokines/métabolisme , Matrice extracellulaire/métabolisme , Fibroblastes/métabolisme , Expression des gènes , Protéines à domaine LIM/génétique , Protéines à domaine LIM/métabolisme , Facteurs de transcription/métabolisme , Microenvironnement tumoral/génétique
20.
Ecotoxicol Environ Saf ; 270: 115941, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38184977

RÉSUMÉ

Early exposure to dibutyl phthalate (DBP) can cause hypospadias in newborn foetuses. However, the underlying molecular mechanism is not well defined. Aberrant angiogenesis is associated with various dysplasias including urogenital deficits. In vivo and in vitro angiogenesis assays showed reduced angiogenesis in the hypospadias group and DBP exposed group. RNA-sequencing analysis of DBP-treated HUVECs revealed decreased expression of transforming growth factor beta 1-induced transcript 1 (TGFB1I1) and a significantly enriched angiogenesis-associated pathway. Further experiments revealed that decreased TGFB1I1 expression was associated with disrupted tube formation and migration, which resulted in decreased angiogenesis. Functional assays revealed that the overexpression of TGFB1I1 promoted tube formation and migration of HUVECs in the DBP-treated group. Moreover, we showed that the transcription factor AR was regulated by TGFB1I1 through inhibiting its translocation from the cytoplasm to the nucleus. Together, our results identified TGFB1I1 as a component of aberrant angiogenesis in hypospadias rats and its interaction with AR might be a potential target for hypospadias development.


Sujet(s)
Phtalate de dibutyle , Hypospadias , Mâle , Humains , Femelle , Rats , Animaux , Phtalate de dibutyle/toxicité , Exposition maternelle , Hypospadias/induit chimiquement , Hypospadias/métabolisme , Plastifiants/toxicité , , Rat Sprague-Dawley
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...