Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 95
Filtrer
Plus de filtres











Gamme d'année
1.
Int J Biol Macromol ; 278(Pt 3): 134681, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39214831

RÉSUMÉ

Bio-based aerogel is a functionalized nanoporous material with environmentally friendly, high surface area, ultra-low density, high porosity, and low thermal conductivity, making it suitable for various applications such as energy-saving buildings, electronic information, separation, adsorption, catalysis, biomedicine, and others. However, the current bio-based chitosan aerogel still faces great challenges in reaching multifunctional improvement to address its intrinsic shortcomings. Herein, we propose a new approach depending upon supramolecular interactions for constructing chitosan/bacterial cellulose aerogels that simultaneously possess superior moisture resistance/fatigue, anti-thermal-shock, and flame retardancy. Specifically, the aerogels demonstrate remarkable characteristics, namely high strength (self-standing itself weight beyond 10,676 times), low thermal conductivity (lowest to 22 mW m-1 K-1 under normal pressure and room temperature), and excellent fatigue resistance (almost negligible permanent deformation at 1 % strain even undergoing compressive cycles up to 10,000 times). On the other hand, the aerogels display exceptional moisture resistance with superhydrophobicity (moisture absorption rate <0.88 % for 160 h at 70 °C and 85 % relative humidity), excellent thermal shock property (withstand cold-hot shock up to 200 cycles with rapid temperature changes between -30 °C and 60 °C), and remarkable fire retardancy (swiftly self-extinguishing in 0.6 s). Additionally, the compressive stress increases to 0.223 MPa at 3 % strain after hydrophobic treatment, representing a 27 % enhancement in mechanical robustness. Further, the mechanism responsible for microstructural evolution has been also established in different strain conditions. This work may provide rich possibilities for developing multifunctional bio-based aerogel for energy-saving buildings.


Sujet(s)
Chitosane , Gels , Chitosane/composition chimique , Gels/composition chimique , Conductivité thermique , Porosité , Interactions hydrophobes et hydrophiles , Cellulose/composition chimique , Température , Eau/composition chimique
2.
Materials (Basel) ; 17(16)2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39203145

RÉSUMÉ

Refractory materials are an important pillar for the stable development of the high-temperature industry. A large amount of waste refractories needs to be further disposed of every year, so it is of great significance to carry out research on the recycling of used refractories. In this work, lightweight composite aggregate was prepared by using discarded Al2O3-ZrO2-C refractories as the main raw material, and the performance of the prepared lightweight aggregate was improved by adjusting the calcination temperature and introducing light calcined magnesia additives. The results showed that the cold compressive strength and thermal shock resistance of the lightweight aggregates were significantly improved with increasing calcination temperature. Moreover, the introduction of light calcined magnesia can effectively improve the apparent porosity, cold compressive strength, and thermal shock resistance of the prepared lightweight aggregates at the calcination temperature of 1400 °C. Consequently, this work provides a useful reference for the resource utilization of used refractories, while the prepared lightweight aggregates are expected to be applied in the field of high-temperature insulation.

3.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000677

RÉSUMÉ

3D printing technology is becoming a widely adopted alternative to traditional polymer manufacturing methods. The most important advantage of 3D printing over traditional manufacturing methods, such as injection molding or extrusion, is the short time from the creation of a new design to the finished product. Nevertheless, 3D-printed parts generally have lower strength and lower durability compared to the same parts manufactured using traditional methods. Resistance to the environmental conditions in which a 3D-printed part operates is important to its durability. One of the most important factors that reduces durability and degrades the mechanical properties of 3D-printed parts is temperature, especially rapid temperature changes. In the case of inhomogeneous internal geometry and heterogeneous material properties, rapid temperature changes can have a significant impact on the degradation of 3D-printed parts. This degradation is more severe in high-humidity environments. Under these complex service conditions, information on the strength and fatigue behavior of 3D-printed polymers is limited. In this study, we evaluated the effects of high humidity and temperature changes on the durability and strength properties of 3D-printed parts. Samples made of commonly available materials such as ABS (Acrylonitrile Butadiene Styrene), ASA (Acrylonitrile-Styrene-Acrylate), HIPS (High-Impact Polystyrene), and PLA (Poly(lactic acid)) were subjected to temperature cycling, from an ambient temperature to -20 °C, and then were heated to 70 °C. After thermal treatment, the samples were subjected to cyclic loading to determine changes in their fatigue life relative to non-thermally treated reference samples. The results of cyclic testing showed a decrease in durability for samples made of ASA and HIPS. The ABS material proved to be resistant to the environmental effects of shocks, while the PLA material exhibited an increase in durability. Changes in the internal structure and porosity of the specimens under temperature changes were also evaluated using microcomputed tomography (microCT). Temperature changes also affected the porosity of the samples, which varied depending on the material used.

4.
Small ; : e2404104, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953403

RÉSUMÉ

Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.

5.
Materials (Basel) ; 17(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38998222

RÉSUMÉ

Purging plugs made of corundum-spinel castables containing Cr2O3 have been widely utilized in secondary refining process. However, their poor thermal shock resistance has greatly limited the improvement of their service life. Aiming to enhance their properties, we introduced alumina bubbles (ABs) to corundum-spinel castables, and the effects of the AB addition on the properties of the castables are studied in this manuscript. The results indicate that the apparent porosity, permanent linear change, cold strength, and hot strength all increased with an increasing AB amount. The thermal shock resistance of the samples with the AB addition was improved; the residual strength and residual strength ratio of the sample with 4 wt% ABs was the best. The effects of ABs on the tabular alumina aggregate distribution and relationship between the cold strength of the samples and the AB content was evaluated via the box dimension method. With the increments of AB content, the box dimension value of the tabular alumina within the samples significantly decreased, indicating that the tabular alumina aggregate distribution was related to the amount of ABs. In addition, the relationship between the box dimension and the strength was also established.

6.
Materials (Basel) ; 17(10)2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38793329

RÉSUMÉ

The precipitation-hardenable nickel-based superalloy Rene 41 exhibits remarkable mechanical characteristics and high corrosion resistance at high temperatures, properties that allow it to be used in high-end applications. This research paper presents findings on the influence of thermal shocks on its microstructure, hardness, and thermal diffusivity at temperatures between 700 and 1000 °C. Solar energy was used for cyclic thermal shock tests. The samples were characterized using microhardness measurements, optical microscopic analysis, scanning electron microscopy coupled with EDS elemental chemical analysis, X-ray diffraction, and flash thermal diffusivity measurements. Structural transformations and the variation of properties were observed with an increase in the number of shocks applied at the same temperature and with temperature variation for the same number of thermal shocks.

7.
Adv Mater ; 36(32): e2403525, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38762765

RÉSUMÉ

Heterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal-support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub-2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS-Ru-NCs/TiN) via a special Ru-Ti interaction using the high-temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru-Ti interfacial perimeter. HTS-Ru-NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm-2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS-Ru-NCs/TiN yield 1.0 A cm-2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.

8.
Environ Sci Pollut Res Int ; 31(25): 37757-37776, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38787472

RÉSUMÉ

Raw-crushed wind-turbine blade (RCWTB), a waste from the recycling of wind-turbine blades, is used as a raw material in concrete in this research. It contains not only fiberglass-composite fibers that bridge the cementitious matrix but also polyurethane and balsa-wood particles. Therefore, concrete containing RCWTB can be notably affected by moisture and temperature fluctuations and by exposure to high temperatures. In this research, the performance of five concrete mixes with 0.0%, 1.5%, 3.0%, 4.5%, and 6.0% RCWTB, respectively, is studied under moist/dry, alternating-sign-temperature-shock, and high-temperature-shock tests. Two damage mechanisms of RCWTB within concrete were found through these tests: on the one hand, micro-cracking of the cementitious matrix, which was verified by microscopic analyses and was dependent on concrete porosity; on the other, damage and degradation of the RCWTB components, as the polyurethane melted, and the balsa-wood particles burned. Both phenomena led to larger remaining-strain levels and reduced concrete compressive strength by up to 25% under temperature and humidity variations, although the bridging effect of the fiberglass-composite fibers was effective when adding RCWTB amounts higher than 3.0%. The compressive-strength loss after the high-temperature-shock test increased with the RCWTB content, reaching maximum values of 8% after an exposure time of 7 days. Statistical analyses revealed that effect of the RCA amount in the concrete was conditioned by the exposure times in all the tests. The accurate definition of those times is therefore key to set an RCWTB content in concrete that ensures its suitable behavior under the environmental conditions analyzed.


Sujet(s)
Matériaux de construction , Température , Vent , Polyuréthanes , Recyclage
9.
J Colloid Interface Sci ; 667: 111-118, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38626654

RÉSUMÉ

Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.

10.
ACS Appl Mater Interfaces ; 16(15): 19340-19349, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38570338

RÉSUMÉ

Solid-state quantum emitters are vital building blocks for quantum information science and quantum technology. Among various types of solid-state emitters discovered to date, color centers in hexagonal boron nitride have garnered tremendous traction in recent years, thanks to their environmental robustness, high brightness, and room-temperature operation. Most recently, these quantum emitters have been employed for satellite-based quantum key distribution. One of the most important requirements to qualify these emitters for space-based applications is their optical stability against cryogenic thermal shock. Such an understanding has, however, remained elusive to date. Here, we report on the effects caused by such thermal shock that induces random, irreversible changes in the spectral characteristics of the quantum emitters. By employing a combination of structural characterizations and density functional calculations, we attribute the observed changes to lattice strain caused by cryogenic temperature shock. Our study sheds light on the stability of the quantum emitters under extreme conditions─similar to those countered in outer space.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE