Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.055
Filtrer
1.
J Hazard Mater ; 479: 135663, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39217931

RÉSUMÉ

Groundwater contaminated by potentially toxic elements has become an increasing global concern for human health. Therefore, it is crucial to identify the sources and health risks of potentially toxic elements, especially in arid areas. Despite the necessity, there is a notable research gap concerning the sources and risks of these elements within multi-layer aquifers in such regions. To address this gap, 54 phreatic and 24 confined groundwater samples were collected from an arid area in Northwest China. This study aimed to trace the sources and evaluate the human health risks of potentially toxic elements by natural background level (NBL), positive matrix factorization (PMF) model, and health risk model. Findings revealed exceeding levels of potentially toxic elements existed in phreatic and confined aquifers. Source apportionment and NBL results indicated that mineral dissolution, evaporation, redox reactions, and human activities were the main factors for elevated concentrations of potentially toxic elements. High Fe and Mn concentrations were attributed to reduction environments, while F accumulation resulted from slow runoff, and irrigation from the Yellow River. Due to high F levels, more than one-third of groundwater samples (phreatic: 33.14 %, confined: 56.22 %) posed non-carcinogenic health risks to population groups. Adults displayed higher carcinogenic risks (phreatic: 19.47 %, confined: 34.16 %) than infants (phreatic: 0 %, confined: 0 %) and children (phreatic: 1.26 %, confined: 7.97 %) owing to the toxic elements of Cr. The confined aquifer presented greater health risks than the phreatic aquifer. Consequently, controlling the levels of F and Cr in multi-layered aquifers is key to reducing health risks. These findings provide valuable insights into protecting groundwater from contamination by potentially toxic elements in multi-layered aquifers worldwide.

2.
Bull Environ Contam Toxicol ; 113(3): 37, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225823

RÉSUMÉ

Ecuador's wetlands and aquatic ecosystems are chronically exposed to ash contamination due to the frequent volcanoes' eruptions in the country. Still, the short and long-term effects of ash contamination on the aquatic biota are not well understood. We used ashes released by the Cotopaxi volcano in 2016 to investigate their acute and chronic effects in Daphna magna. We calculated the half maximal effective concentration (EC50) after 2 and 21 days of exposure, the non-observed effect concentration (NOEC), and the lowest observed effect concentration (LOEC) on offspring production. We also analyzed the metal concentration present in the ashes. The EC50 values at 2 and 21 days were found at 80% and 5% ash leachate concentrations, respectively. After 21 days of exposure, high mortality and low neonatal production were observed in all leachate concentrations (NOEC was at 15%, and LOEC was at 20% leachate concentration). Our results suggest that the ashes from the Cotopaxi volcano can cause acute and chronic toxicity to aquatic life and should be classified as hazardous waste, depending on the dose. There is an urgent need for further studies that assess toxicity caused by the intense volcanic activity in Ecuador.


Sujet(s)
Daphnia , Éruptions volcaniques , Polluants chimiques de l'eau , Animaux , Polluants chimiques de l'eau/toxicité , Équateur , Daphnia/effets des médicaments et des substances chimiques , Tests de toxicité chronique , Tests de toxicité aigüe , Surveillance de l'environnement , Daphnia magna
3.
Heliyon ; 10(17): e36301, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39263165

RÉSUMÉ

Mining activities may cause the accumulation of potentially toxic elements (PTEs) in surrounding soils, posing ecological threats and health dangers to the local population. Therefore, a comprehensive assessment using multiple indicators was used to quantify the level of risk in the region. The results showed that the mean values of the nine potentially toxic elements in the study area were lower than the background values only for Cr, and the lowest coefficient of variation was 17.1 % for As, and the spatial distribution characteristics of the elements indicate that they are enriched by different factors. The elements Hg and Cd, which have substantial cumulative features, are the key contributors to ecological risk in the study region, which is overall at moderate risk. APCS-MLR model parses out 4 possible sources: mixed industrial, mining and transportation sources (53.98 %), natural sources (24.56 %), atmospheric deposition sources (12.60 %), and agricultural production sources (8.76 %). The probabilistic health risks show that children are more susceptible to health risks than adults; among children, the safety criteria (HI < 1 and CR < 10-4) were surpassed by 29.29 % of THI and 8.58 % of TCR. According to source-orientated health hazards, the element Ni significantly increases the risk of cancer. Mixed sources from industry, mining, and transportation are important sources of health risks. The results of this research provide some scientific references for the management and decrease of regional ecological and health risks.

4.
Toxicol Rep ; 13: 101706, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39238831

RÉSUMÉ

Chicken (Gallus domesticus) is a significant source of animal protein for the people of Bangladesh. However, anthropogenic activity may contaminate chicken meat with potentially toxic elements (PTEs) despite the nutritional benefits. Current work aims to determine the accumulated content of PTEs (Pb, Cd, Cr, As, and Hg) in chickens and poultry feeds commercially sold in Bangladesh markets and compare with WHO, FAO, EU, EC, FSANZ standards. Three different chicken varieties, native (local variety, freehand raised), poultry (raised for meat only), and layer chicken (commercially raised for eggs and later used for meat), were investigated, and commercial poultry feeds were used to raise the latter two varieties. The Pb, Cd, Cr, As, and Hg contents (mg kg-1 fresh weight (f.w.) were 0.481-1.067, 0.025-0.118, 0.069-0.319, 0.007-0.071, 0.002-0.019, respectively. In addition, associated health risks due to the PTEs in different varieties of chicken organs, e.g., meat, liver, and kidney, were evaluated. The study suggests that the poultry feeds should be carefully monitored regarding PTEs content to avoid potential human health risks due to chicken consumption in Bangladesh.

5.
Environ Res ; : 119965, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39265760

RÉSUMÉ

Knowledge about the characteristics of overburden and tailings from manganese (Mn) mining is essential for defining their levels of potentially toxic elements (PTEs) and appropriate environmental management. This study aimed to assess the total and bioavailable contents of PTEs in Mn mining areas in the Eastern Amazon, as well as the associated environmental risks. The samples were collected in areas of overburden and tailings deposition, in addition to forest soils in the Azul mine, Carajás Mineral Province, Brazil. These samples were characterized in terms of fertility, granulometry, and total and bioavailable PTE contents. The pH values of the forest soil were more acidic than those of the overburden and tailings, and the organic matter contents were considerably higher in the forest soil. All PTEs, especially Mn, Ba, Cu, Zn, and Pb, presented higher contents in the overburden and tailings. However, chemical fractionation revealed that PTEs were predominantly in the residual fraction, with percentage contents above 60% of the total content. These results suggest a low risk of environmental contamination. The findings of this study may support more efficient environmental rehabilitation in Mn mining areas in the Amazon.

6.
Environ Geochem Health ; 46(10): 392, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39177675

RÉSUMÉ

Coal is an essential component in achieving the goal of fulfilling the energy demands of the world. Nevertheless, the extensive practice of coal mining has resulted in environmental contamination through the release of both organic and inorganic pollutants, including polycyclic aromatic compounds and potentially toxic elements, into various mediums, notably soil. The escalating coal-mining activities across Europe have amplified the concentration of specific elements in the soil. Therefore, a thorough and meticulous assessment of these environmental impacts is imperative to furnish policymakers, industries, and communities with valuable insights, facilitating the formulation and adoption of effective mitigation strategies. Considering the results of studies from 2018 to 2023, this review thoroughly evaluates the current state of soil pollution in the coal mining areas of Europe, focusing on polycyclic aromatic hydrocarbons and potentially toxic elements. By analyzing the acquired data, this study aims to evaluate the levels of contamination by these pollutants in soils. The findings reveal that low molecular weight polycyclic aromatic hydrocarbons dominate the polycyclic aromatic compounds present, while potentially toxic elements including Zn, Pb, Mn, and Cr emerge as major contributors to soil contamination in coal mining areas from Europe.


Sujet(s)
Industrie minière charbon , Surveillance de l'environnement , Hydrocarbures aromatiques polycycliques , Polluants du sol , Polluants du sol/analyse , Europe , Hydrocarbures aromatiques polycycliques/analyse , Pollution de l'environnement/analyse , Sol/composition chimique , Métaux lourds/analyse
7.
Environ Geochem Health ; 46(10): 381, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39167155

RÉSUMÉ

Potentially toxic elements (PTEs) pose a significant threat to aquatic ecosystems. This study investigated the content and potential sources of PTEs (Cr, Mn, Ni, Cu, Zn, Cd, Pb) in water, sediment, and dominant aquatic plants (Hydrilla verticillata and Spirogyra varians) in the Xiaojiang River, located near the Zhaiying manganese mine in Guizhou Province, China. Correlation analysis, principal component analysis (PCA), and cluster analysis were employed to assess PTE distribution and potential sources. Water PTE concentrations complied with the Class II standard (GB3838-2002), indicating no water pollution. However, sediment PTE levels exceeded background values, particularly Mn, which exhibited moderate to strong contamination. Cd also showed moderate contamination, posing a considerable ecological risk. Cd was the main potential pollutant with the highest contribution rate. Mn and Cd were therefore identified as priority pollutants requiring targeted abatement strategies. Mining activities likely represent the primary source, but combined pollution from vehicle traffic and agriculture might also contribute. Hydrilla verticillata demonstrated a higher capacity for PTE enrichment from sediment compared to Spirogyra varians, suggesting its potential for sediment remediation (except for Cu). A significant correlation existed between both plant species and sediment PTE content. PCA supported the association between S. varians and sediment PTEs. Linear regression analyses revealed better correlations between S. varians and sediment Mn, Ni, Cu, and Zn (0.77, 0.68, 0.82, and 0.79, respectively). Taken together, these findings suggest that S. varians serves as an effective bioindicator for monitoring sediment contamination with PTEs.


Sujet(s)
Surveillance de l'environnement , Sédiments géologiques , Hydrocharitaceae , Manganèse , Mine , Rivières , Spirogyra , Polluants chimiques de l'eau , Polluants chimiques de l'eau/analyse , Chine , Manganèse/analyse , Sédiments géologiques/composition chimique , Rivières/composition chimique , Hydrocharitaceae/métabolisme , Surveillance de l'environnement/méthodes , Spirogyra/métabolisme , Bioaccumulation , Métaux lourds/analyse , Analyse en composantes principales
8.
Heliyon ; 10(15): e34994, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39144995

RÉSUMÉ

Freshwater ecosystems are at significant risk of contamination by potentially toxic elements (PTEs) due to their high inherent toxicity, their persistence in the environment and their tendency to bioaccumulate in sediments and living organisms. We investigated aquatic macrophyte communities and the concentrations of As, Cu, Cd, Cr, Pb, Zn, Ni and Fe in water and sediment samples to identify a pollution pattern along the Sava River and to investigate the potential impact of these PTEs on the diversity and structure of macrophyte communities. The study, which covered 945 km of the Sava River, showed a downstream increase in sediment concentrations of the analyzed elements. Both species richness and alpha diversity of macrophyte communities also generally increase downstream. Ordinary and partial Mantel tests indicate that macrophyte communities are significantly correlated with sediment chemistry, but only weakly correlated with water chemistry. In the lowland regions (downstream), beta diversity decreases successively, which can be attributed to an increasing similarity of environmental conditions at downstream sites. Species richness is relatively low at sites with low concentrations of Cr, Cd, Fe, and Cu in the sediment. However, species richness increases to a certain extent with increasing element concentrations; as element concentrations increase further, species richness decreases, probably as a result of increased toxicity. Some species that are generally more tolerant to high concentrations of PTEs are: Ceratophyllum demersum, Iris pseudacorus, Najas marina, Butomus umbellatus, Vallisneria spiralis, Potamogeton gramineus and Bolboschoenus maritimus maritimus. Potamogeton perfoliatus and the moss species Cinclidotus fontinaloides and Fontinalis antipyretica have narrow ecological amplitudes in relation to the concentrations of PTEs in the sediment.

9.
Chemosphere ; : 143088, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39146994

RÉSUMÉ

Environmentally persistent free radicals (EPFRs) may pose a potential risk to the ecosystem and human health via oxidation stress and are considered emerging contaminants. Being stable with a lifetime of minutes or several months and abundant in transitional matrices (e.g. biochar), EPFRs continue to affect deposits (e.g. soil) and related media (plants) when the transitional matrices (e.g. biochar) are applied. The impact of EPFR on the plant uptake of chemical elements (CEs) was studied in the field conditions where, for two years, biochar and fertilisers were applied to the agricultural soil for winter triticale cultivation. EPFRs determination methods, along with the element uptake indices (bioaccumulation and biophilicity) and the method of the dynamic factors were applied. Results have shown that EPFRs have influenced the soil properties relevant to CE soil bioavailability and bioaccumulation in plants. The impact of EPFRs on CE transport in the soil-plant system was observed to influence the biogeochemical behaviour of CEs in the soil-plant system. This work provides the first findings on EPFRs-induces changes on CE bioavailability and bioaccumulation intensity, indicating the higher plant uptake risk of some potentially toxic elements (such as Cr).

10.
Mar Pollut Bull ; 207: 116807, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39128235

RÉSUMÉ

This study examined ten heavy metals in five species: Macrobrachium vollenhovenii, Penaeus monodon, P. notialis, Chloroscombrus chrysurus, and Pseudotolithus typus, from Makoko floating slum, Lagos Lagoon to discern their bioaccumulation potentials, sources of origin, and health implications. The concentrations were in this order: Fe (4.172-10.176) > Zn (1.310-5.754) > Mn (0.475-2.330) > Cu (0.238-1.735) > Pb (0.121-0.391) > Cd (0.055-0.283) > Co (0.056-0.144) > Ni (0.039-0.121) > Cr (0.022-0.095) > As (0.003-0.031) mg/kg. The MPDI denotes "low toxicity," and the BAF/BSAF revealed that benthic species had higher bioconcentration potentials. Multivariate analyses revealed that heavy metals exhibited mutual relationships during chemical transport, and their sources were both geogenic and human-induced. The HI values were below 1, and the TCR values were below the threshold of 1 × 10-4. This suggests that the probabilities of noncancer and carcinogenic risks in human populations due to long-term consumption of the evaluated species are unlikely.

11.
Molecules ; 29(15)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39125114

RÉSUMÉ

In this study, magnetic copper ferrite (CuFe2O4) nanoparticles were synthesized via the Pechini sol-gel method and evaluated for the removal of Cd(II) ions from aqueous solutions. PF600 and PF800 refer to the samples that were synthesized at 600 °C and 800 °C, respectively. Comprehensive characterization using FTIR, XRD, FE-SEM, HR-TEM, and EDX confirmed the successful formation of CuFe2O4 spinel structures, with crystallite sizes of 22.64 nm (PF600) and 30.13 nm (PF800). FE-SEM analysis revealed particle diameters of 154.98 nm (PF600) and 230.05 nm (PF800), exhibiting spherical and irregular shapes. HR-TEM analysis further confirmed the presence of aggregated nanoparticles with average diameters of 52.26 nm (PF600) and 98.32 nm (PF800). The PF600 and PF800 nanoparticles exhibited exceptional adsorption capacities of 377.36 mg/g and 322.58 mg/g, respectively, significantly outperforming many materials reported in the literature. Adsorption followed the Langmuir isotherm model and pseudo-second-order kinetics, indicating monolayer adsorption and strong physisorption. The process was spontaneous, exothermic, and predominantly physical. Reusability tests demonstrated high adsorption efficiency across multiple cycles when desorbed with a 0.5 M ethylenediaminetetraacetic acid (EDTA) solution, emphasizing the practical applicability of these nanoparticles. The inherent magnetic properties of CuFe2O4 facilitated easy separation from the aqueous medium using a magnet, enabling efficient and cost-effective recovery of the adsorbent. These findings highlight the potential of CuFe2O4 nanoparticles, particularly PF600, for the effective and sustainable removal of Cd(II) ions from water.

12.
Environ Monit Assess ; 196(8): 774, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39090377

RÉSUMÉ

Potentially toxic elements (PTEs) are widely released into the environment as a result of increased urban and industrial development in recent years. The bulk of PTEs are cancer-causing and harm human health by producing free radicals. As a result, it is crucial to monitor, evaluate, and limit the effects of the elements on human health. In this study, levels of PTEs (As, Cr, Cd, Ni, Co, and Pb) in pharmaceutical effluents discharged along the Asa River around the Ilorin metropolis and their seasonal variations were evaluated. Water samples were collected from eight different locations over a two-season period along the river and analyzed for PTEs using atomic absorption spectrophotometry and an inductively coupled plasma optical emission spectrometer. As, Cd, Pb, Cr, Ni, and Co had mean PTE values in the effluents (both seasons) of 0.0258, 0.0233, 0.00193, 0.0176, and 0.0164 mg/L, respectively, with As and Pb surpassing the WHO standard. Maximum temperature and pH were measured for the physicochemical parameters in the wet season, whereas electrical conductivity and total dissolved solids were seen in the dry season. The average values of the metals in the human risk assessment for carcinogenicity were As > Cd > Pb > Cr > Ni > Co, with As above the recommended threshold in several locations. However, all of the metal hazard indices were < 1, indicating that the waters were suitable for domestic purposes. Nonetheless, the relevant authorities should mandate that pharmaceutical effluents be treated before being released into bodies of water.


Sujet(s)
Surveillance de l'environnement , Saisons , Polluants chimiques de l'eau , Nigeria , Polluants chimiques de l'eau/analyse , Humains , Appréciation des risques , Eaux usées/composition chimique , Préparations pharmaceutiques/analyse , Métaux lourds/analyse , Arsenic/analyse , Rivières/composition chimique , Villes
13.
Ecotoxicol Environ Saf ; 284: 116927, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39216334

RÉSUMÉ

Compound pollution at industrial sites impedes urban development, especially when there is a lack of understanding about the spatial variations of internal pollution in industrial areas producing light-weight materials. In this study, spatial distribution and ecological risks of potentially toxic elements (PTEs), volatile organic compounds (VOCs), and petroleum hydrocarbons (C10-40) in the soil and groundwater of an Al/Cu (aluminum/copper) industrial site have been analyzed comprehensively. Results revealed the progressive clustering of pollutants in different soil layers, which indicated varying levels of penetration and migration of pollutants from the surface downward. Furthermore, severity of pollution varied according to pollutant type, with Cu (5-10,228 mg kg-1) often exceeding the background levels significantly (>40). Cd (0.03-2.60 mg kg-1) and Hg (0.01-3.73 mg kg-1) were found at elevated concentrations in deeper soil layers, suggesting distinct variations of PTEs across different soil depths. Among the more hazardous VOCS, polychlorinated biphenyls (1.80-234 µg kg-1) were particularly prevalent in the deeper layers of soil. Petroleum hydrocarbons (C10-40) were widely detected (6-582 mg kg-1), showing significant migration potential from surface to deep soil. These findings suggest that prolonged industrial activities lead to deep-seated accumulation of pollutants, which also impacts the groundwater, contributing to long-term dispersion of contaminants. Furthermore, multivariate statistical analysis indicated certain positive correlations among the distribution of Cu, Pb and petroleum hydrocarbons, indicating possible coupling of these pollutants. Severe Cu pollution caused an ecological risk in the surface soil layer (covering >20 % area of high pollution site, contributing >40 % ecological risk). While the Hg and Cd posed significant risks in the deeper soil layers, showing higher risk coefficients and mobility. The study provides crucial insights into the transformation of urban areas with a history of industrial uses into community spaces and highlights the risks posed by the remaining pollutants.

14.
Article de Anglais | MEDLINE | ID: mdl-39190203

RÉSUMÉ

Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO2, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.

15.
Toxics ; 12(8)2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39195670

RÉSUMÉ

This study investigates plastic litter on two beaches in Malta, Golden Bay and Rivera Beach, with a focus on plastic abundance, characteristics, sources, and the influence of human activity on pollution levels. Conducted in March 2023 during the low-tourist season, 13 sediment samples were collected from a depth of 5 cm using a systematic square sampling method. Plastic litter was quantified and sorted by size, shape, color, and polymer type, and concentrations of potentially toxic elements (PTEs) were measured (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe via ICP-OES). Golden Bay exhibited significantly higher plastic quantities (53.9 ± 4.3 n/m2) compared to Rivera Beach (29.7 ± 4.0 n/m2). Microplastics were dominant on both beaches, with Golden Bay showing a higher proportion (57.0%) than Rivera Beach (50.6%). The plastic litter predominantly consisted of PE (59.6-68.0%) and PP (29.6-38.8%). Golden Bay plastics had PTE concentrations up to 4.9 times higher than those in Rivera Beach, notably for Mn (309.0 µg/g vs. 63.1 µg/g). This research contributes valuable insights into the dynamics of plastic pollution in coastal environments, particularly in areas influenced by tourism.

16.
Chemosphere ; 364: 143184, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39197684

RÉSUMÉ

Globally, soil contamination with heavy metals (HMs) pose serious threats to soil health, crop productivity, and human health. The present investigation involved synthesis and analysis of biochar with bimetallic combination of iron and magnesium (Fe-Mg-BC). Our study evaluated how Fe-Mg-BC affects the absorption of cadmium (Cd), lead (Pb), and copper (Cu) in spinach (Spinacia oleracea L.) and remediation of soil contaminated with multiple HMs. Results demonstrated the successful loading of iron (Fe) and magnesium (Mg) onto pristine biochar (BC) derived from peanut shells. The addition of Fe-Mg-BC (3%) notably increased spinach biomass, enhancing photosynthesis, transpiration, stomatal conductance, and intercellular CO2 levels by 22%, 21%, 103%, and 15.3%, respectively. Compared to control, Fe-Mg-BC (3%) suppressed metal-induced oxidative stress by boosting levels of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in roots by 40.9%, 57%, 54.8 %, and in shoots by 55.5%, 65.5%, and 37.4% in shoots, respectively. The Fe-Mg-BC effectively reduced the uptake of Cd, Pb, and Cu in spinach tissues by transforming their bioavailable fractions to non-bioavailable forms. The Fe-Mg-BC (3%) significantly reduced the mobility of Cd, Pb and Cu in soil and limited the concentration of Cd, Pb, and Cu in plant roots by 34.1%, 79.2%, 47%, and shoots by 56.3%, 43.3%, and 54.1%, respectively, compared to control. These findings underscore the potential of Fe-Mg-BC as a promising amendment for reclaiming soils contaminated with variety of HMs, thereby making a significant contribution to the promotion of safer food production.

17.
Environ Sci Pollut Res Int ; 31(39): 52306-52325, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39143385

RÉSUMÉ

Potentially toxic elements (PTEs), especially arsenic in drinking water, pose significant global health risks, including cancer. This study evaluates the groundwater quality in Giresun province on the Black Sea coast of Türkiye by analyzing twelve groundwater resources. The mean concentrations of macronutrients (mg/L) were: Ca (10.53 ± 6.63), Na (6.81 ± 3.47), Mg (3.39 ± 2.27), and K (2.05 ± 1.10). The mean levels of PTEs (µg/L) were: Al (40.02 ± 15.45), Fe (17.65 ± 14.35), Zn (5.63 ± 2.59), V (4.74 ± 5.85), Cu (1.57 ± 0.81), Mn (1.02 ± 0.76), As (0.93 ± 0.73), Cr (0.75 ± 0.57), Ni (0.41 ± 0.18), Pb (0.36 ± 0.23), and Cd (0.10 ± 0.05). All PTE levels complied with WHO drinking water safety guidelines, and overall water quality was excellent. The heavy metal evaluation index (HEI < 10) and heavy metal pollution index (HPI < 45) indicate low pollution levels across all stations. Irrigation water quality was largely adequate, as shown by the magnesium hazard (MH), sodium adsorption ratio (SAR), Na%, and Kelly's ratio (KR). The total hazard index (THI) values consistently remained below 1, indicating no non-carcinogenic health risks. However, at station 10 (city center), the cancer risk (CR) for adults due to arsenic was slightly above the threshold (1.44E-04). Using principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping, the study determined that most PTEs originated from natural geological formations or a combination of natural and human sources, with minimal impact from human activities. These findings highlight the safety and reliability of the groundwater sources studied, emphasizing their potential as a long-term, safe water supply for nearby populations.


Sujet(s)
Surveillance de l'environnement , Nappe phréatique , Métaux lourds , Polluants chimiques de l'eau , Qualité de l'eau , Nappe phréatique/composition chimique , Appréciation des risques , Polluants chimiques de l'eau/analyse , Métaux lourds/analyse , Mer Noire , Humains , Eau de boisson/composition chimique , Arsenic/analyse
18.
Environ Pollut ; 361: 124810, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39181302

RÉSUMÉ

One of the sources of chronic exposure to potentially toxic elements (PTE), especially in polluted environments, is the inhalation of resuspended road dust (RD). The aim of this study is to assess the inhalation bioaccessibility of PTE in RD from highly polluted environments from mining/smelting industries and traffic, and to identify any correlations between the bioaccessibility fraction of PTE and the physicochemical characteristics of the particles. RD from the studied area contains extremely high total concentrations of Cr, V, and Mn, which are likely due to pollution from the smelting industry. Additionally, elevated total concentrations of other elements associated with traffic emissions including Zn, Cu, Pb, Sb, and Sn were also measured. The bioaccessibility of PTE was assessed using two synthetic extraction solutions - Gamble's solution (GS) and Artificial Lysosomal Fluid (ALF). The majority of elements showed negligible bioaccessibility in GS. However, quite high inhalation bioaccessibility was observed for Zn, Pb, Sb, Cd, and Mn in the ALF solution, with a mean bioaccessible fraction of 49, 51.5, 41, 50, and 40% respectively. The highest bioavailable fraction was measured for Cd (97%) in a sample collected near a steel production facility and for Pb (95%) in a sample collected near the highway. These results indicate that increased mobility of the elements in inhaled particles occurs only in the case of phagocytosis. The lowest inhalation bioavailability was measured for Cr (mean is 3%). Differential individual particle analysis revealed that about 60% of phases, mostly major (Cr,Ti,V)-bearing metallic alloys, silicates, oxides and sulphides, are stable in ALF solution, while 40% of phases, mostly (Fe,Ca,Mn)-bearing oxides, silicates, sulphides, metals and metallic alloys originating from steel production, ferrochrome, ferrosilicon and vanadium production and from traffic emissions have been heavily corroded or completely dissolved. The study provides valuable information to further assess health hazards from various emission sources.

19.
J Hazard Mater ; 478: 135454, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-39151355

RÉSUMÉ

Accurate prediction of spatial distribution of potentially toxic elements (PTEs) is crucial for soil pollution prevention and risk control. Achieving accurate prediction of spatial distribution of soil PTEs at a large scale using conventional methods presents significant challenges. In this study, machine learning (ML) models, specially artificial neural network (ANN), random forest (RF), and extreme gradient boosting (XGB), were used to predict spatial distribution of soil PTEs and identify associated key factors in mining and smelting area located in Yunnan Province, China, under the three scenarios: (1) natural + socioeconomic + spatial datasets (NS), (2) NS + irrigation pollution index (IPI) datasets, (3) NS + IPI + deposition (DEPO) datasets. The results highlighted the combination of NS+IPI+DEPO yielded the highest predictive accuracy across ML models. Particularly, XGB exhibited the highest performance for As (R2 =0.7939), Cd (R2 =0.6679), Cu (R2 =0.8519), Pb (R2 =0.8317), and Zn (R2 =0.7669), whereas RF performed the best for Ni (R2 =0.7146). The feature importance and Shapley additive explanation (SHAP) analysis revealed that DEPO and IPI were the pivotal factors influencing the distribution of soil PTEs. Our findings highlighted the important role of DEPO in spatial distribution prediction of soil PTEs, which has often been ignored in previous studies.

20.
Chemosphere ; 363: 142985, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39089339

RÉSUMÉ

The adsorption layer system has shown great potential as a cost-effective and practical strategy for the recycling and management of excavated rocks containing potentially toxic elements (PTEs). Although this system has been employed in various civil engineering projects throughout Japan, its long-term performance to immobilize PTEs has rarely been investigated. This study aims to evaluate the effectiveness of the adsorption layer system applied in an actual road embankment approximately 11 years after construction. The embankment system is comprised of a layer of excavated arsenic (As)-bearing mudstone built on top of a bottom adsorption layer mixed with an iron (Fe)-based adsorbent. Collection of undisturbed sample was carried out by implementing borehole drilling surveys on the embankment. Batch leaching experiments using deionized water and hydrochloric acid were conducted to evaluate the water-soluble and acid-leachable concentrations of As, Fe, and other coexisting ions. The leaching of As from the mudstone layer was likely induced by As desorption from Fe-oxides/oxyhydroxides naturally present under alkaline conditions, including the oxidation of framboidal pyrite, which was identified as a potential source of As. This was supported by electron probe microanalyzer (EPMA) observations showing the presence of trace amounts of As in framboidal pyrite crystals. Arsenic leached from the mudstone layer was then immobilized by Fe oxyhydroxides found in the adsorption layer. Based on geochemical modeling and X-ray photoelectron spectroscopy (XPS) results, leached As predominantly existed as the negatively charged HAsO42- oxyanion, which is readily sequestered by Fe oxyhydroxides. Moreover, the effectiveness of the adsorption layer was assessed and its lifetime was estimated, and the results revealed it still possessed enough capacity to adsorb As released from mudstone in the foreseeable future. This prediction utilized the maximum potential amount of As that could leach from the excavated rock layer with time.


Sujet(s)
Arsenic , Fer , Recyclage , Adsorption , Arsenic/analyse , Arsenic/composition chimique , Fer/composition chimique , Japon , Polluants chimiques de l'eau/composition chimique , Polluants chimiques de l'eau/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE