Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biomedicines ; 11(2)2023 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-36831031

RÉSUMÉ

BACKGROUND: M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 µg/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. RESULTS: Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. CONCLUSIONS: During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage.

2.
Biotechnol Prog ; 35(6): e2891, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31374159

RÉSUMÉ

pH variations influence the delivery of essential nutrients and CO2 solubility, which impact algae metabolism. In this study the microalgal growth and chlorophyll, lipid, and fatty acids content; along with the expression of some genes implicated in the biosynthesis of lipids were examined in Chlamydomonas reinhardtii subjected to pH values of 7.0, 7.8, and 8.5. At pH 7.8 an increase in cell growth was observed with a significant accumulation of chlorophyll (1.75-fold) when compared with growth at pH 7, while at pH 8.5 a sharp decrease in both parameters was observed when compared with the other pH values tested. Lipid content increased 3.0 (14.81% of dry cell weight, dcw) and 2.3 times (11.43% dcw) at pH 7.8 and 8.5, respectively, when compared with the experiment at pH 7 (4.97% dcw). The compositions of major fatty acids in the strains growing at pH 7.0, 7.8, or 8.5 were 25.7, 28.0, and 32.1% for palmitic acid; 17.3, 14.7, and 25.7% for oleic acid; and 9.8, 12.1, and 4.6% for linoleic acid; respectively. qRT-PCR analysis showed that the transcripts of ß-carboxyltransferase, Acyl carrier protein 1, acyl-ACP thiolase 1, acyl-sn-glycerol-3-phosphate acyltransferase, and diacylglycerol acyl transferase isoform 3 were significantly induced at pH 7.8 when compared with the other two pH conditions. These results indicate that the induction of genes implicated in the early and final steps of lipid biosynthesis contributes to their accumulation in the stationary phase. Our research suggests that a pH of 7.8 might be ideal to maximize growth and lipid accumulation.


Sujet(s)
Chlamydomonas reinhardtii/métabolisme , Acides gras/métabolisme , Métabolisme lipidique , Adénosine triphosphate/biosynthèse , Chlamydomonas reinhardtii/croissance et développement , Chlorophylle/analyse , Acides gras/analyse , Concentration en ions d'hydrogène
3.
BMC Genomics ; 20(1): 411, 2019 May 22.
Article de Anglais | MEDLINE | ID: mdl-31117938

RÉSUMÉ

BACKGROUND: Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. RESULTS: Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. CONCLUSION: Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process.


Sujet(s)
Paroi cellulaire/composition chimique , Chalcone/pharmacologie , Acides gras/métabolisme , Protéines fongiques/métabolisme , Teigne/métabolisme , Trichophyton/métabolisme , Facteurs de virulence/antagonistes et inhibiteurs , Antifongiques/pharmacologie , Paroi cellulaire/génétique , Élastine/métabolisme , Protéines fongiques/génétique , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes fongiques , Humains , Kératines/métabolisme , Transduction du signal , Teigne/traitement médicamenteux , Teigne/microbiologie , Trichophyton/effets des médicaments et des substances chimiques , Trichophyton/génétique
4.
Clin Immunol ; 162: 107-17, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26628192

RÉSUMÉ

Our objective was to identify transcriptional biomarkers in peripheral blood mononuclear cells (PBMC) that discriminate individuals with latent tuberculosis infection (LTBI) from those with pulmonary tuberculosis (PTB) in subjects with non-insulin-dependent diabetes mellitus (NIDDM) and in individuals without NIDDM. Using gene expression microarrays we identified differentially expressed genes from lungs of mice infected with Mycobacterium tuberculosis (Mtb) or a mutant (ΔsigH) representing a non-inflammatory model. Genes expressed in blood, with inflammatory related functions were evaluated in humans by RT-qPCR. NCF1 and ORM transcripts have the better discriminatory capacity to identify PTB subjects from LTBI and non-infected controls (NICs) independently of the presence of NIDDM. The sequential evaluation of the mRNA levels of NCF1 and ORM as multiple diagnostic tests showed 95% Sensitivity (Se) and 80% Specificity (Sp). In addition, FPR2 promises to be a good biomarker for the PTB detection in subjects with NIDDM (Se=100%; Sp=90%).


Sujet(s)
Marqueurs biologiques , Diabète de type 2/complications , Régulation de l'expression des gènes , Tuberculose pulmonaire/complications , Tuberculose pulmonaire/diagnostic , Adulte , Sujet âgé , Animaux , Analyse de regroupements , Femelle , Analyse de profil d'expression de gènes , Humains , Mâle , Souris , Adulte d'âge moyen , Tuberculose pulmonaire/physiopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE