Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 67
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
EJHaem ; 5(4): 661-668, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39157599

RÉSUMÉ

Monovalent Omicron XBB.1.5 mRNA vaccines were newly developed and approved by the FDA in Autumn 2023 for preventing COVID-19. However, clinical efficacy for these vaccines is currently lacking. We previously established the quantification of antigen-specific antibody sequence (QASAS) method to assess the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination at the mRNA level using B-cell receptor (BCR) repertoire assay and the coronavirus antibody database (CoV-AbDab). Here, we used this method to evaluate the immunogenicity of monovalent XBB.1.5 vaccines. We analyzed repeated blood samples of healthy volunteers before and after monovalent XBB.1.5 vaccination (BNT162b2 XBB.1.5 or mRNA-1273.815) for the BCR repertoire to assess BCR/antibody sequences that matched SARS-CoV-2-specific sequences in the database. The number of matched unique sequences and their total reads quickly increased 1 week after vaccination. Matched sequences included those bound to the Omicron strain and Omicron XBB sublineage. The antibody sequences that can bind to the Omicron strain and XBB sublineage revealed that the monovalent XBB.1.5 vaccines showed a stronger response than previous vaccines or SARS-CoV-2 infection before the emergence of XBB sublineage. The QASAS method was able to demonstrate the immunogenic effect of monovalent XBB.1.5 vaccines for the 2023-2024 COVID-19 vaccination campaign.

2.
Influenza Other Respir Viruses ; 18(8): e13360, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39145535

RÉSUMÉ

We conducted a multicentre test-negative case-control study covering the period from October 2023 to January 2024 among adult patients aged ≥ 18 years hospitalised with severe acute respiratory infection in Europe. We provide early estimates of the effectiveness of the newly adapted XBB.1.5 COVID-19 vaccines against PCR-confirmed SARS-CoV-2 hospitalisation. Vaccine effectiveness was 49% overall, ranging between 69% at 14-29 days and 40% at 60-105 days post vaccination. The adapted XBB.1.5 COVID-19 vaccines conferred protection against COVID-19 hospitalisation in the first 3.5 months post vaccination, with VE > 70% in older adults (≥ 65 years) up to 1 month post vaccination.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Hospitalisation , SARS-CoV-2 , Vaccination , , Humains , Hospitalisation/statistiques et données numériques , COVID-19/prévention et contrôle , COVID-19/épidémiologie , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , Sujet âgé , Europe/épidémiologie , Femelle , Mâle , Adulte d'âge moyen , Adulte , Études cas-témoins , SARS-CoV-2/immunologie , /statistiques et données numériques , Vaccination/statistiques et données numériques , Jeune adulte , Sujet âgé de 80 ans ou plus , Adolescent
3.
Cell Rep Med ; : 101701, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39208800

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies are substantially expanded 1 month after a shot of XBB.1.5 monovalent mRNA vaccine (XBB.1.5 MV) booster, but the durability of this response remains unknown. Here, we address this question by performing neutralization assays on four viral variants (D614G, BA.5, XBB.1.5, and JN.1) using sera from participants obtained at ∼1 month, ∼3 months, and ∼6 months post an XBB.1.5 MV booster. Our findings indicate that the resulting neutralizing antibody titers are robust and generally remain at stable levels for the study period, similar to those following XBB infection. Importantly, this durability of neutralizing antibody titers contrasts with the decline observed after a booster of the original monovalent or BA.5 bivalent mRNA vaccine. Our results are in line with the recent national data from the Centers for Disease Control and Prevention, showing that the efficacy against symptomatic SARS-CoV-2 infection is sustained for up to 4 months after an XBB.1.5 MV booster.

4.
Vaccines (Basel) ; 12(7)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39066372

RÉSUMÉ

We report neutralization titer data against contemporary SARS-CoV-2 sublineages from an ongoing, phase 2/3, open-label, clinical trial of a single dose (30 µg) of an Omicron XBB.1.5-adapted BNT162b2 monovalent mRNA vaccine. The trial included healthy participants who had received at least three previous doses of an mRNA vaccine authorized in the United States, with the most recent authorized vaccine dose being a bivalent Omicron BA.4/BA.5-adapted vaccine given at least 150 days before the study vaccination. In this analysis, Omicron XBB.1.5, BA.2.86, and JN.1 serum neutralizing titers were assessed at baseline and at 1 month after vaccination. Analyses were conducted in a subset of participants who were at least 18 years of age (N = 40) and who had evidence of previous SARS-CoV-2 infection. Immunogenicity was also evaluated in a group of participants who received bivalent BA.4/BA.5-adapted BNT162b2 in another study (ClinicalTrials.gov Identifier: NCT05472038) and who were matched demographically to the participants in the current trial. In this analysis, monovalent XBB.1.5-adapted BNT162b2 vaccine elicited higher XBB.1.5, BA.2.86, and JN.1 neutralizing titers than those elicited by bivalent BA.4/BA.5-adapted BNT162b2. Overall geometric mean fold rises in neutralizing titers from baseline to 1 month after vaccination were higher among participants who received XBB.1.5-adapted BNT162b2 than those who received bivalent BA.4/BA.5-adapted BNT162b2 for XBB.1.5 (7.6 vs. 5.6), slightly higher for JN.1 (3.9 vs. 3.5), and similar for BA.2.86 (4.8 vs. 4.9). ClinicalTrials.gov Identifier: NCT05997290.

5.
Vaccines (Basel) ; 12(7)2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39066413

RÉSUMÉ

Recently updated COVID-19 mRNA vaccines encode the spike protein of the omicron subvariant XBB.1.5 and are recommended for patients with inflammatory bowel disease (IBD) on immunosuppressive treatment. Nonetheless, their immunogenicity in patients with IBD against rapidly expanding virus variants remains unknown. This prospective multicenter cohort study is the first study to investigate the immunogenicity of XBB.1.5-adapted vaccines in patients with IBD. Systemic and mucosal antibodies targeting the receptor-binding domains (RBDs) of the omicron subvariants XBB.1.5, EG.5.1, and BA.2.86, as well as their neutralization were quantified before and two to four weeks after vaccination with monovalent XBB.1.5-adapted mRNA vaccines. Vaccination increased levels of serum anti-RBD IgG targeting XBB.1.5, EG.5.1, and BA.2.86 (1.9-fold, 1.8-fold, and 2.6-fold, respectively) and enhanced corresponding neutralization responses (2.3-fold, 3.1-fold, and 3.5-fold, respectively). Following vaccination, anti-TNF-treated patients had reduced virus neutralization compared to patients on treatments with other cellular targets. 11.1% and 16.7% of patients lacked EG.5.1 and BA.2.86 neutralization, respectively; all these patients received anti-TNF treatment. At mucosal sites, vaccination induced variant-specific anti-RBD IgG but failed to induce RBD-targeting IgA. Our findings provide a basis for future vaccine recommendations while highlighting the importance of frequent booster vaccine adaptation and the need for mucosal vaccination strategies in patients with IBD.

6.
bioRxiv ; 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39071292

RÉSUMÉ

The emergence of highly contagious and immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has required reformulation of coronavirus disease 2019 (COVID-19) vaccines to target those new variants specifically. While previous infections and booster vaccinations can enhance variant neutralization, it is unclear whether the monovalent version, administered using either mRNA or protein-based vaccine platforms, can elicit de novo B-cell responses specific for Omicron XBB.1.5 variants. Here, we dissected the genetic antibody repertoire of 603 individual plasmablasts derived from five individuals who received a monovalent XBB.1.5 vaccination either with mRNA (Moderna or Pfizer/BioNtech) or adjuvanted protein (Novavax). From these sequences, we expressed 100 human monoclonal antibodies and determined binding, affinity and protective potential against several SARS-CoV-2 variants, including JN.1. We then select two vaccine-induced XBB.1.5 mAbs, M2 and M39. M2 mAb was a de novo, antibody, i.e., specific for XBB.1.5 but not ancestral SARS-CoV-2. M39 bound and neutralized both XBB.1.5 and JN.1 strains. Our high-resolution cryo-electron microscopy (EM) structures of M2 and M39 in complex with the XBB.1.5 spike glycoprotein defined the epitopes engaged and revealed the molecular determinants for the mAbs' specificity. These data show, at the molecular level, that monovalent, variant-specific vaccines can elicit functional antibodies, and shed light on potential functional and genetic differences of mAbs induced by vaccinations with different vaccine platforms.\.

7.
J Med Virol ; 96(8): e29822, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39056238

RÉSUMÉ

COVID-19 vaccine became available in Tanzania during the first wave of the Omicron variant. During that time community seroprevalence of SARS-CoV-2 was already at 50%-80%. To date, it remains largely unknown whether ongoing vaccination with the primary series vaccines has any meaningful immune-boosting effects against newer Omicron subvariants. Therefore, we tested cross-neutralizing capacity of antibodies elicited by infection, vaccination, or both against SARS-CoV-2 Omicron subvariants BA.1, and the newer subvariants BQ.1.1 and XBB.1.5. that were unexperienced by this population. Participants who were either SARS-CoV-2 infected-only (n = 28), infected vaccinated (n = 22), or vaccinated-only (n = 73) were recruited from Dar-es-Salaam, Tanzania, between April and December 2022. Plasma 50% neutralization titers (NT50) against SARS-CoV-2 wild-type strain and Omicron subvariants were quantified by a lentiviral-based pseudo-virus assay. Percentage of participants with neutralizing activity against WT and BA.1 was high (>85%) but was reduced against BQ.1.1 (64%-77%) and XBB.1.5 (35%-68%) subvariants. The low median cross-neutralization titer was slightly higher in the infected vaccinated group compared to vaccine-only group against BQ.1.1 (NT50 148 vs. 85, p = 0.032) and XBB.1.5 (NT50 85 vs. 37 p = 0.022) subvariants. In contrast, vaccine-boost among the infected vaccinated did not result to increased cross-neutralization compared to infected-only participants (BQ.1.1 [NT50 of 148 vs. 100, p = 0.501] and XBB.1.5 [NT50 86 vs. 45, p = 0.474]). We report severely attenuated neutralization titers against BQ.1.1 and XBB.1.5 subvariants among vaccinated participants, which marginally improved in the infected vaccinated participants. Our findings call for further studies to evaluate effectiveness of the primary series vaccines in preventing severe infection and mortality against the newer variants.


Sujet(s)
Anticorps neutralisants , Anticorps antiviraux , Vaccins contre la COVID-19 , COVID-19 , SARS-CoV-2 , Vaccination , Humains , Tanzanie/épidémiologie , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/épidémiologie , Anticorps neutralisants/sang , Anticorps neutralisants/immunologie , Anticorps antiviraux/sang , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , Mâle , Femelle , SARS-CoV-2/immunologie , Adulte , Adulte d'âge moyen , Jeune adulte , Tests de neutralisation , Adolescent
8.
Mol Cell ; 84(14): 2747-2764.e7, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39059371

RÉSUMÉ

A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.


Sujet(s)
COVID-19 , Cryomicroscopie électronique , Mutation , Conformation des protéines , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/immunologie , Glycoprotéine de spicule des coronavirus/métabolisme , SARS-CoV-2/génétique , SARS-CoV-2/immunologie , SARS-CoV-2/métabolisme , SARS-CoV-2/composition chimique , Humains , COVID-19/virologie , COVID-19/immunologie , Liaison aux protéines , Échappement immunitaire , Modèles moléculaires , Domaines protéiques , Sites de fixation
9.
Microorganisms ; 12(6)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38930583

RÉSUMÉ

The evaluation of coronavirus disease 2019 (COVID-19) vaccine immunogenicity remains essential as the severe acute respiratory syncytial virus 2 (SARS-CoV-2) pandemic continues to evolve and as additional variants emerge. Neutralizing antibodies are a known correlate of protection for SARS-CoV-2 vaccines. A pseudovirus neutralization (PNT) assay was developed and validated at Novavax Clinical Immunology Laboratories to allow for the detection of neutralizing antibodies in vaccine clinical trial sera. The PNT assay was precise, accurate, linear, and specific in measuring SARS-CoV-2 neutralization titers in human serum for ancestral strain and the Omicron subvariants BA.5 and XBB.1.5, with an overall geometric coefficient of variation of ≤43.4%, a percent relative bias within the expected range of -60% to 150%, and a linearity value of R2 > 0.98 for all three strains. This pseudovirus assay will be useful for the analysis of vaccine clinical trial samples to assess vaccine immunogenicity. Future work will focus on modifying the assay for emerging variants, including XBB.1.16, EG.5.1, BA.2.86, and any other variants that emerge in the ongoing pandemic.

10.
Infect Dis Rep ; 16(3): 481-490, 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38920892

RÉSUMÉ

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to severe respiratory illness, rapid disease progression, and higher rates of intensive care unit admission in pregnant women. Infection during pregnancy is associated with an increased risk of preterm delivery, cesarean section, fetal dysfunction, preeclampsia, and perinatal death. Vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from pregnant women to their fetuses has also been observed. Although severe infections in neonates and infants are rare, newborns can experience serious consequences from COVID-19 due to their suboptimal humoral immune system protection. The amino acids in the structural proteins of SARS-CoV-2 are constantly mutating. Since around January 2023, COVID-19, caused by omicron-type SARS-CoV-2 variants, has been prevalent globally. These variants can evade the immune response triggered by traditional mRNA-based COVID-19 vaccines, such as BNT162b2. Therefore, vaccination with BNT162b2 XBB.1.5, which provides protection against omicron-type SARS-CoV-2 variants, is recommended. METHODS: This retrospective cohort study included 148 pregnant women who received the BNT162b2 XBB.1.5 vaccine at 30 partner medical institutions from September 2023 to January 2024. We examined the titers of anti-spike glycoprotein SARS-CoV-2 immunoglobin G (IgG) and IgA in the blood and umbilical cord blood obtained from the participants using ELISA. FINDINGS: Anti-spike glycoprotein SARS-CoV-2 IgG and IgA titers were highest in the blood and cord blood at late gestational age (28-34 weeks). No serious side effects or adverse events were observed in either the pregnant women or their newborns. INTERPRETATION: Pregnant women who received the BNT162b2 XBB.1.5 vaccine during gestational weeks 28 to 34 had the highest titers of anti-omicron SARS-CoV-2 variant antibodies in their blood. Moreover, these antibodies were transferred to their umbilical cord blood. To validate our findings, large cohort clinical studies involving numerous pregnant women are warranted. FUNDING: This study was funded by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and Grants-in-Aid for Medical Research from the Japan Agency for Medical Research and Development (AMED).

11.
Immun Inflamm Dis ; 12(6): e1323, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38938013

RÉSUMÉ

INTRODUCTION: The COVID-19 pandemic has taken many forms and continues to evolve, now around the Omicron wave, raising concerns over the globe. With COVID-19 being declared no longer a "public health emergency of international concern (PHEIC)," the COVID pandemic is still far from over, as new Omicron subvariants of interest and concern have risen since January of 2023. Mainly with the XBB.1.5 and XBB.1.16 subvariants, the pandemic is still very much "alive" and "breathing." METHODS: This review consists of five highly concerning questions about the current state of the COVID Omicron peak. We searched four main online databases to answer the first four questions. For the last one, we performed a systematic review of the literature, with keywords "Omicron," "Guidelines," and "Recommendations." RESULTS: A total of 31 articles were included. The main symptoms of the current Omicron wave include a characteristically high fever, coughing, conjunctivitis (with itching eyes), sore throat, runny nose, congestion, fatigue, body ache, and headache. The median incubation period of the symptoms is shorter than the previous peaks. Vaccination against COVID can still be considered effective for the new subvariants. CONCLUSION: Guidelines recommend continuation of personal protective measures, third and fourth dose boosters, along with administration of bivalent messenger RNA vaccine boosters. The consensus antiviral treatment is combination therapy using Nirmatrelvir and Ritonavir, and the consensus for pre-exposure prophylaxis is Tixagevimab and Cilgavimab combination. We hope the present paper raises awareness for the continuing presence of COVID and ways to lower the risks, especially for at-risk groups.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , SARS-CoV-2 , Humains , COVID-19/prévention et contrôle , COVID-19/épidémiologie , COVID-19/virologie , SARS-CoV-2/immunologie , Vaccins contre la COVID-19/usage thérapeutique , Vaccination , Pandémies/prévention et contrôle , Antiviraux/usage thérapeutique , Traitements médicamenteux de la COVID-19
12.
Euro Surveill ; 29(26)2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38940003

RÉSUMÉ

BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.


Sujet(s)
Anticorps neutralisants , Anticorps antiviraux , Vaccins contre la COVID-19 , COVID-19 , Réinfection , SARS-CoV-2 , Séroconversion , Humains , SARS-CoV-2/immunologie , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/épidémiologie , Études longitudinales , Allemagne/épidémiologie , Anticorps antiviraux/sang , Adulte d'âge moyen , Adulte , Mâle , Anticorps neutralisants/sang , Femelle , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , Sujet âgé , Réinfection/immunologie , Réinfection/virologie , Réinfection/prévention et contrôle , Études séroépidémiologiques , Adolescent , Jeune adulte , Enfant , Enfant d'âge préscolaire , Sujet âgé de 80 ans ou plus , Vaccination
13.
Vaccine ; 42(22): 126029, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-38839519

RÉSUMÉ

The level of neutralizing antibodies required to confer protection against COVID-19 breakthrough infections (BIs) is unclear, and the ability to know the immune status of individuals against the rapidly changing endemic variants is limited. We assessed longitudinal serum anti-RBD antibody levels and neutralizing activities (NTs) against Omicron BA.5 and XBB.1.5 in healthcare workers following the fourth monovalent and fifth bivalent BA.4-5 vaccines. The occurrence of BIs was also followed, and pre-infection antibody levels were compared between patients who developed BI and those who did not. In addition, we collected whole blood samples on the same day as the sera and stored them on filter papers (nos. 545, 590, and 424) for up to two months, then measured their NTs using dried blood spots (DBS) eluates, and compared them with the NTs in paired sera. Pre-infection levels of NTs were lower in patients who developed BI than those who did not, but the anti-RBD antibody levels were not different between them. The NTs below 50 % using 200-fold diluted sera might be one of the indicators of high risk for COVID-19 BI. However, the NTs against XBB.1.5 at 6 months after the fifth dose of bivalent BA.4-5 vaccine were lower than this threshold in almost half of infection-naïve participants. NTs measured using DBS eluates were strongly correlated with those measured using paired sera, but the time and temperature stability varied with the type of filter paper; no. 545 filter paper was found to most suitable for NT evaluation.


Sujet(s)
Anticorps neutralisants , Anticorps antiviraux , Vaccins contre la COVID-19 , COVID-19 , Dépistage sur goutte de sang séché , SARS-CoV-2 , Humains , Anticorps neutralisants/sang , Anticorps neutralisants/immunologie , COVID-19/immunologie , COVID-19/prévention et contrôle , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie , SARS-CoV-2/immunologie , Dépistage sur goutte de sang séché/méthodes , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , Femelle , Mâle , Adulte , Adulte d'âge moyen , Personnel de santé , Réinfections
14.
Curr Drug Targets ; 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38726782

RÉSUMÉ

The emergence of new variants of the SARS-CoV-2 virus during the COVID-19 pandemic has prompted significant developments in the understanding, monitoring, and response to these strains. This comprehensive review focuses on two prominent variants of interest (VoI), XBB. 1.5 (Kraken) and XBB.1.16 ("Arcturus"), along with seven variants under observation (VuM), including EG.5. The World Health Organization (WHO) identified these variants in July 2023, highlighting EG.5's noteworthy rise in prevalence. EG.5, also known as "Eris," has exhibited an increased effective reproductive rate, prompting concerns about its contagiousness and immune evasion capabilities. With an altered spike protein in the Receptor-Binding Domain (RBD), EG.5 shares similarities with XBB.1.5 but surpasses it in prevalence, constituting 20% of COVID-19 cases in the United States by late August. EG.5's subvariant, EG.5.1, poses challenges with mutations like Q52H and F456L, contributing to its ability to bypass neutralizing antibodies. The global distribution of SARS-CoV-2 variants presents a dynamic landscape, with XBB.1.16 and other strains gaining prominence. The advent of the BA.2.86 variant further complicates the scenario, with its notable spread in regions lacking robust viral surveillance. A thorough analysis of mutations reveals the evolving nature of the Omicron variant, with distinct amino acid changes characterizing XBB.1.5, XBB.1.16, and EG.5. The WHO designates EG.5 as a "variant of interest" due to its increased contagiousness and potential immune evasion, emphasizing the need for vigilant monitoring. The risk assessment of EG.5 underscores its rapid development and growing prevalence globally. While booster vaccines targeting XBB.1.5 are in development, antiviral medications like nirmatrelvir/ritonavir (Paxlovid) continue to exhibit efficacy. In the context of the evolving variants, the FDA has granted emergency use authorization for updated COVID-19 vaccines targeting circulating strains, reflecting the adaptability of vaccination strategies to address emerging challenges. This comprehensive overview provides a nuanced understanding of the diverse Omicron subvariants, their global impact, and the ongoing efforts to combat their spread through vaccination and therapeutic interventions.

15.
Aust Prescr ; 47(2): 64-65, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38737372
16.
Front Immunol ; 15: 1382944, 2024.
Article de Anglais | MEDLINE | ID: mdl-38803497

RÉSUMÉ

As coronavirus disease-2019 (COVID-19) becomes an endemic disease, the virus continues to evolve and become immunologically distinct from previous strains. Immune imprinting has raised concerns about bivalent mRNA vaccines containing both ancestral virus and Omicron variant. To increase efficacy against the predominant strains as of the second half of 2023, the updated vaccine formulation contained only the mRNA of XBB.1.5 sublineage. We conducted a multicenter, test-negative, case-control study to estimate XBB.1.5 monovalent vaccine effectiveness (VE) and present the results of an interim analysis with data collected in November 2023. Patients who underwent COVID-19 testing at eight university hospitals were included and matched based on age (19-49, 50-64, and ≥65 years) and sex in a 1:1 ratio. VE was calculated using the adjusted odds ratio derived from multivariable logistic regression. Of the 992 patients included, 49 (5.3%) received the XBB.1.5 monovalent vaccine at least 7 days before COVID-19 testing. Patients with COVID-19 (cases) were less likely to have received the XBB.1.5 monovalent vaccine (case 3.5% vs. control 7.2%, p=0.019) and to have a history of COVID-19 within 6 months (2.2% vs. 4.6%, p=0.068). In contrast, patients with COVID-19 were more likely to be healthcare workers (8.2% vs. 3.0%, p=0.001) and to have chronic neurological diseases (16.7% vs. 11.9%, p=0.048). The adjusted VE of the XBB.1.5 monovalent mRNA vaccine was 56.8% (95% confidence interval: 18.7-77.9%). XBB.1.5 monovalent mRNA vaccine provided significant protection against COVID-19 in the first one to two months after vaccination.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , SARS-CoV-2 , , Humains , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/virologie , Femelle , Mâle , Adulte d'âge moyen , Adulte , Sujet âgé , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Études cas-témoins , République de Corée/épidémiologie , Vaccins à ARNm , Jeune adulte , Vaccins synthétiques/immunologie
17.
Glycoconj J ; 41(2): 163-174, 2024 04.
Article de Anglais | MEDLINE | ID: mdl-38642280

RÉSUMÉ

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Sujet(s)
Héparine , Polyosides , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/métabolisme , Héparine/pharmacologie , Héparine/composition chimique , Héparine/métabolisme , Polyosides/composition chimique , Polyosides/pharmacologie , Polyosides/métabolisme , Humains , Glycoprotéine de spicule des coronavirus/métabolisme , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique , COVID-19/virologie , COVID-19/métabolisme , Liaison aux protéines , Animaux , Antiviraux/pharmacologie , Antiviraux/composition chimique , Héparitine sulfate/métabolisme , Héparitine sulfate/composition chimique
18.
J Virol Methods ; 327: 114945, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38649070

RÉSUMÉ

As variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, assessment of vaccine immunogenicity remains a critical factor to support continued vaccination. To this end, an in vitro microneutralization (MN50) assay was validated to quantitate SARS-CoV-2 neutralizing antibodies against prototype and variant strains (Beta, Delta, Omicron BA.1, Omicron BA.5, and XBB.1.5) in human serum. For the prototype strain, the MN50 assay met acceptance criteria for inter-/intra-assay precision, specificity, linearity, and selectivity. The assay was robust against changes to virus/serum incubation time, cell seeding density, virus content per well, cell passage number, and serum interference. Analyte in serum samples was stable up to five freeze/thaw cycles and for up to 12 months of storage at -80 ± 10 °C. Similar results were observed for the variant-adapted MN50 assays. The conversion factor to convert assay result units to WHO international standard units (IU/mL) was determined to be 0.62 for the prototype strain. This MN50 assay will be useful for vaccine immunogenicity analyses in clinical trial samples, enabling assessment of vaccine immunogenicity for ancestral and variant strains as variant-adapted vaccines are developed.


Sujet(s)
Anticorps neutralisants , Anticorps antiviraux , Vaccins contre la COVID-19 , COVID-19 , Immunogénicité des vaccins , Tests de neutralisation , SARS-CoV-2 , Humains , Anticorps neutralisants/sang , Anticorps neutralisants/immunologie , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Tests de neutralisation/méthodes , Anticorps antiviraux/sang , Vaccins contre la COVID-19/immunologie , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/diagnostic , Sensibilité et spécificité , Animaux , Reproductibilité des résultats
19.
Open Forum Infect Dis ; 11(4): ofae144, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38567194

RÉSUMÉ

Background: The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent vs separate administration of these vaccines remains unclear. Methods: Here, we analyzed antibody responses in health care workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or on different days through systems serology. Antibody-binding and functional responses were characterized at peak responses and after 6 months following vaccination. Results: IgG1 and neutralization responses to SARS-CoV-2 XBB.1.5 were higher at peak and after 6 months following concurrent administration as compared with separate administration of the COVID-19 and influenza vaccines. While similar results were not observed for influenza responses, no interference was noted with concurrent administration. Conclusions: These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 neutralizing antibody responses while maintaining responses against influenza.

20.
Reumatologia ; 62(1): 4-17, 2024.
Article de Anglais | MEDLINE | ID: mdl-38558893

RÉSUMÉ

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves, infection management in vulnerable populations requires formalized guidance. Although low-virulence variants of SARS-CoV-2 remain predominant, they pose an increased risk of severe illness in adults with rheumatic and musculoskeletal diseases (RMDs). Several disease-specific (chronic long-grade inflammation, concomitant immunosuppression) and individual (advanced age, multimorbidity, pregnancy, vaccination status) factors contribute to excess risk in RMD populations. Various post-COVID-19 manifestations are also increasingly reported and appear more commonly than in the general population. At a pathogenetic level, complex interplay involving innate and acquired immune dysregulation, viral persistence, and genetic predisposition shapes a unique susceptibility profile. Moreover, incident cases of SARS-CoV-2 infection as a trigger factor for the development of autoimmune conditions have been reported. Vaccination remains a key preventive strategy, and encouraging active education and awareness will be crucial for rheumatologists in the upcoming years. In patients with RMDs, COVID-19 vaccines' benefits outweigh the risks. Derivation of specialized diagnostic and therapeutic protocols within a comprehensive COVID-19 care plan represents an ideal scenario for healthcare system organization. Vigilance for symptoms of infection and rapid diagnosis are key for introducing antiviral treatment in patients with RMDs in a timely manner. This review provides updated guidance on optimal immunization, diagnosis, and antiviral treatment strategies.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE