Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 100
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Molecules ; 29(14)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39064982

RÉSUMÉ

Carbon nanotube (CNT) fibers are renowned for their exceptional axial tensile strength and modulus. However, in yarn form, they frequently encounter transverse loading in practical applications, which exposes their suboptimal mechanical attributes rooted in inadequate inter-tube interactions and yarn surface defects. Efforts to mitigate micro-slippage among CNTs have encompassed gap-filling methodologies with varied materials, yet the outcomes have fallen short of expectations. This work aimed to enhance the mechanical properties of CNT yarns via infiltration with polyacrylonitrile (PAN) under supercritical carbon dioxide (sc-CO2) conditions. PAN was strategically chosen for its capability to undergo pre-oxidation and subsequent carbonization, leading to robust graphitic reinforcement. Leveraging sc-CO2's swelling and high permeability properties, the infiltration process effectively plugged interstitial spaces, elevating the yarn's tensile strength to 277.50 MPa and Young's modulus to 5094.05 MPa. Additional enhancements were realized after pre-oxidation, conferring a dense, reinforced shell structure that augmented tensile strength by 96.93% and Young's modulus by 298.80%. Scanning electron microscopy (SEM) analyses revealed a homogeneous PAN distribution within the yarn matrix, corroborated by X-ray photoelectron spectroscopy (XPS) evidence of C-N bonding, indicative of a successfully interlaced network. Consequently, this investigation introduces a novel strategy to tackle micro-slippage in CNT yarns, thereby achieving substantial improvements in their mechanical resilience.

2.
Polymers (Basel) ; 16(14)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39065370

RÉSUMÉ

Biobased nylon (PA56) not only has the same physical properties as nylon (PA6/PA66) but its production method is also more environmentally friendly. PA56 fabric has the advantages of moisture absorption, perspiration, high-temperature resistance, and flexibility, which have been widely studied by scientific researchers. Wool has the advantages of beauty, environmental protection, and anti-wrinkle. However, pure wool fabrics have low strength and are easy to shrink when washed, which has always been a problem. Hence, this work adopted the ring spinning method to prepare wool/PA56 blended yarn with wool content of 0, 10, 30, 50, 70, and 100 wt%. Thus, to examine the effects of different blending ratios and twists on yarn performance, PA56 was blended with wool. The results showed that findings indicate that yarn performance is influenced by both yarn twist and blending ratio. The yarn thickens and takes on more linear density as the blending ratio and yarn twist increase. As the wool ratio increases, the yarn's breaking stress and breaking strain decrease. It is obvious that the strength and elongation at break of pure PA56 yarn are 2.09 cN/Dtex and 33.92%, respectively. When the wool content was 100 wt%, the strength and elongation at break of the blended yarn were 0.66 cN/Dtex and 21.15%, respectively. With the amount of wool blending, the yarn hairiness index's H-value initially rises and subsequently falls. The percentage of blended wool reaches 50% at 2.14; less blending might exacerbate the yarn's stem, resulting in neps and unevenness features. The quality of the yarn improves as the blending percentage rises. The yarn has the advantages of resource saving, biodegradability, and environmental friendliness and has a broad application prospect in the automotive interior field.

3.
BMC Public Health ; 24(1): 1707, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926813

RÉSUMÉ

BACKGROUND: Indigenous people in Australia experience far poorer health than non-Indigenous Australians. A growing body of research suggests that Indigenous people who are strong in their cultural identity experience better health than those who are not. Yet little is known about how Indigenous people create and maintain strong cultural identities in the contemporary context. This paper explores how Indigenous people in south-eastern Australia create and maintain strong cultural identities to support their health and wellbeing. METHODS: Data were collected from 44 Indigenous people living in the south-eastern Australian state of Victoria via yarning. Yarning is a cultural mode of conversation that privileges Indigenous ways of knowing, doing and being. Yarning participants were selected for their prominence within Victorian Indigenous health services and/or their prominence within the Victorian Indigenous community services sector more broadly. Due to the restrictions of COVID-19, yarns were conducted individually online via Zoom. Data were analysed employing constructivist grounded theory, which was the overarching qualitative research methodology. RESULTS: All yarning participants considered maintaining a strong cultural identity as vital to maintaining their health and wellbeing. They did this via four main ways: knowing one's Mob and knowing one's Country; connecting with one's own Mob and with one's own Country; connecting with Community and Country more broadly; and connecting with the more creative and/or expressive elements of Culture. Importantly, these practices are listed in order of priority. Indigenous people who either do not know their Mob or Country, or for whom the connections with their own Mob and their own Country are weak, may therefore be most vulnerable. This includes Stolen Generations survivors, their descendants, and others impacted by historical and contemporary child removal practices. CONCLUSIONS: The yarns reveal some of the myriad practical ways that Indigenous people maintain a strong cultural identity in contemporary south-eastern Australia. While programs designed to foster connections to Community, Country and/or Culture may benefit all Indigenous participants, those most disconnected from their Ancestral roots may benefit most. Further research is required to determine how best to support Indigenous Victorians whose connections to their own Mob and their own Country are unable to be (re)built.


Sujet(s)
Culture (sociologie) , État de santé , Peuples autochtones , Bien-être psychologique , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Services de santé pour autochtones/organisation et administration , Peuples autochtones/psychologie , Recherche qualitative , Identification sociale , Victoria , Comportement en matière de santé
4.
Adv Sci (Weinh) ; : e2402440, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38935025

RÉSUMÉ

Piezoelectric fiber yarns produced by electrospinning offer a versatile platform for intelligent devices, demonstrating mechanical durability and the ability to convert mechanical strain into electric signals. While conventional methods involve twisting a single poly(vinylidene fluoride-co-trifluoroethylene)(P(VDF-TrFE)) fiber mat to create yarns, by limiting control over the mechanical properties, an approach inspired by composite laminate design principles is proposed for strengthening. By stacking multiple electrospun mats in various sequences and twisting them into yarns, the mechanical properties of P(VDF-TrFE) yarn structures are efficiently optimized. By leveraging a multi-objective Bayesian optimization-based machine learning algorithm without imposing specific stacking restrictions, an optimal stacking sequence is determined that simultaneously enhances the ultimate tensile strength (UTS) and failure strain by considering the orientation angles of each aligned fiber mat as discrete design variables. The conditions on the Pareto front that achieve a balanced improvement in both the UTS and failure strain are identified. Additionally, applying corona poling induces extra dipole polarization in the yarn state, successfully fabricating mechanically robust and high-performance piezoelectric P(VDF-TrFE) yarns. Ultimately, the mechanically strengthened piezoelectric yarns demonstrate superior capabilities in self-powered sensing applications, particularly in challenging environments and sports scenarios, substantiating their potential for real-time signal detection.

5.
Adv Sci (Weinh) ; 11(28): e2401436, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38749008

RÉSUMÉ

Yarn-woven triboelectric nanogenerators (TENGs) have greatly advanced wearable sensor technology, but their limited sensitivity and stability hinder broad adoption. To address these limitations, Poly(VDF-TrFE) and P(olyadiohexylenediamine (PA66)-based nanofibers coaxial yarns (NCYs) combining coaxial conjugated electrospinning and online conductive adhesive coating are developed. The integration of these NCYs led to enhanced TENGs (NCY-TENGs), notable for their flexibility, stretchability, and improved sensitivity, which is ideal for capturing body motion signals. One significant application of this technology is the fabrication of smart insoles from NCY-TENG plain-woven fabrics. These insoles are highly sensitive and possess antibacterial, breathable, and washable properties, making them ideal for real-time gait monitoring in patients with diabetic foot conditions. The NCY-TENGs and their derivatives show immense potential for a variety of wearable electronic devices, representing a considerable advancement in the field of wearable sensors.


Sujet(s)
Démarche , Nanofibres , Textiles , Dispositifs électroniques portables , Nanofibres/composition chimique , Humains , Démarche/physiologie , Conception d'appareillage/méthodes , Nanotechnologie/méthodes , Nanotechnologie/instrumentation , Pied diabétique
6.
Chem Asian J ; 19(12): e202400211, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38709109

RÉSUMÉ

The growing demand for wearable electronics has driven the development of flexible thermoelectric (TE) generators which can harvest waste body heat as a renewable power source. Despite carbon nanotube (CNT) yarns have attracted significant attention as a promising candidate for TE materials, challenges still exist in improving their TE efficiency for commercial applications. Herein, we developed high performance CNT/polyaniline (PANI) yarns by engineering the coating of polyaniline emeraldine base (PANIeb), in which CNT yarns were firstly coated by PANIeb layer and further doped by HCl vapor treatment. With the incorporation of PANIeb, σ and S were simultaneously increased to 1796 S cm-1 and 74.8 µV K-1 for CNT/PANIeb 4-2d fibers, respectively. Further HCl vapor treatment induced greatly increased σ to 3194 S cm-1, but maintained be 83 % value before doping, giving rise to the highest power factor of 1224 µW m-1K-2, higher than pristine CNT yarns of 576 µW m-1K-2. Combining outstanding high TE performance and bending durability, a flexible TE generator was constructed to deliver high out power of 187 nW with temperature gradients of about 30 K. These results demonstrate the potential promise of high-performance CNT/PANI-HCl yarns to harvest waste body heat for sustainable power supply.

7.
Small Methods ; : e2301754, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38593371

RÉSUMÉ

The incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication. These multiscale MTJ scaffolds based on electrospun nanofiber yarns enabled 3D cellular alignment and differentiation, and the "M-type" structure led to cellular organization and interaction at the interface zone. Crucially, a compartmentalized co-culture system is integrated into an MTJ-on-a-chip device for the precise co-culture of muscle and tendon zones using their medium at the same time. Such an MTJ-on-a-chip device is further served for drug-associated MTJ toxic or protective efficacy investigations. These results highlight that these interwoven nanofibrous scaffolds with biomimetic "M-type" interface are beneficial for engineered MTJ tissue development, and MTJ-on-a-chip with precise co-culture system indicated their promising potential as in vitro musculoskeletal models for drug development and biological mechanism studies.

8.
Materials (Basel) ; 17(7)2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38612162

RÉSUMÉ

In this study the influence of fabric weave (plain, twill, and panama) and weft type (flax and hemp yarns) on selected mechanical and comfort properties of six fabrics was analyzed. The results showed that tear and abrasion properties were most affected by the weave. The tensile properties of the linen fabrics were not significantly different when weft hemp yarns were used instead of flax. Fabrics with the same weave seemed to be equally resilient to abrasion regardless of the type of weft. By contrast, the hemp weft yarns favorized the physical and comfort properties of the investigated fabrics. For the same weave, the hemp-linen fabrics were slightly lighter and exhibited lower bulk density, significantly larger air permeability, and improved moisture management properties. Although the results of maximum thermal flux (Qmax) suggested a cooler sensation of the linen fabrics with panama and twill, the hemp-linen fabric with a plain weave seemed to be the optimal choice when a cool sensation was desired. Higher thermal conductivity values also suggested slightly better heat transfer properties of the hemp-linen fabrics, and these were significantly influenced by the weave type. The results clearly indicated the advantages of using hemp for improving physical and specific comfort properties of linen fabrics.

9.
ACS Appl Mater Interfaces ; 16(13): 16788-16799, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38520339

RÉSUMÉ

Smart wearables with the capability for continuous monitoring, perceiving, and understanding human tactile and motion signals, while ensuring comfort, are highly sought after for intelligent healthcare and smart life systems. However, concurrently achieving high-performance tactile sensing, long-lasting wearing comfort, and industrialized fabrication by a low-cost strategy remains a great challenge. This is primarily due to critical research gaps in novel textile structure design for seamless integration with sensing elements. Here, an all-in-one biaxial insertion knit architecture is reported to topologically integrate sensing units within double-knit loops for the fabrication of a large-scale tactile sensing textile by using low-cost industrial manufacturing routes. High sensitivity, stability, and low hysteresis of arrayed sensing units are achieved through engineering of fractal structures of hierarchically patterned piezoresistive yarns via blistering and twisting processing. The as-prepared tactile sensing textiles show desirable sensing performance and robust mechanical property, while ensuring excellent conformability, tailorability, breathability (288 mm s-1), and moisture permeability (3591 g m-2 per day) for minimizing the effect on wearing comfort. The multifunctional applications of tactile sensing textiles are demonstrated in continuously monitoring human motions, tactile interactions with the environment, and recognizing biometric gait. Moreover, we also demonstrate that machine learning-assisted sensing textiles can accurately predict body postures, which holds great promise in advancing the development of personalized healthcare robotics, prosthetics, and intelligent interaction devices.


Sujet(s)
Robotique , Dispositifs électroniques portables , Humains , Textiles , Déplacement , Toucher
10.
Small Methods ; 8(8): e2301387, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38470210

RÉSUMÉ

The application of carbon nanotube (CNT) yarns as thermoelectric materials for harvesting energy from low-grade waste heat including that generated by the human body, is attracting considerable attention. However, the lack of efficient n-type CNT yarns hinders their practical implementation in thermoelectric devices. This study reports efficient n-doping of CNT yarns, employing 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzimidazole-2-yl) phenyl) dimethylamine (N-DMBI) in alternative to conventional n-dopants, with o-dichlorobenzene emerging as the optimal solvent. The small molecular size of N-DMBI enables highly efficient doping within a remarkably short duration (10 s) while ensuring prolonged stability in air and at high temperature (150 °C). Furthermore, Joule annealing of the yarns significantly improves the n-doping efficiency. Consequently, thermoelectric power factors (PFs) of 2800, 2390, and 1534 µW m-1 K-2 are achieved at 200, 150, and 30 °C, respectively. The intercalation of N-DMBI molecules significantly suppresses the thermal conductivity, resulting in the high figure of merit (ZT) of 1.69×10-2 at 100 °C. Additionally, a π-type thermoelectric module is successfully demonstrated incorporating both p- and n-doped CNT yarns. This study offers an efficient doping strategy for achieving CNT yarns with high thermoelectric performance, contributing to the realization of lightweight and mechanically flexible CNT-based thermoelectric devices.

11.
ACS Appl Mater Interfaces ; 16(14): 17598-17606, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38551818

RÉSUMÉ

Carbon nanotubes/polyaniline (CNTs/PANI) composites have attracted significant attention in thermoelectric (TE) conversion due to their excellent stability and easy synthesis. However, their TE performance is far from practical demands, and few flexible yarns/fibers have been developed for wearable electronics. Herein, we developed flexible CNTs/PANI yarns with outstanding TE properties via facile soaking of CNT yarns in a PANI solution, in which the PANI layer was coated on the CNT surface and served as a bridge to interconnect adjacent CNT filaments. With optimizing PANI concentration, immersing duration, and doping level of PANI, the power factor reached 1294 µW m-1 K-2 with a high electrical conductivity of 3651 S cm-1, which is superior to that of most of the reported CNTs/PANI composites and organic yarns. Combining outstanding TE performance with excellent bending stability, a highly integrated and flexible TE generator was assembled consisting of 40 pairs of interval p-n segments, which generate a high power of 377 nW at a temperature gradient of 10 K along the out-of-plane direction. These results indicate the promising application of CNTs/PANI yarns in wearable energy harvesting.

12.
Heliyon ; 10(3): e24965, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38317939

RÉSUMÉ

Core-spun yarn (CSY) is utilized for better fabric characteristics like stretchability, durability, and comfortability. The study aims to investigate the influence of spandex drafts of core-spun yarn on denim fabric characteristics before and after washing treatment. Two types of denim fabrics were produced from two types of core-spun yarn, namely 16 + 40D, and 16 + 70D by applying 2.8, 3.0, 3.20 spandex drafts for 16 + 40D, and 3.40, 3.50, 3.60 spandex drafts for 16 + 70D. Prepared denim fabrics were desized, and acid-washed and the properties of denim fabric before and after washing were investigated as a function of spandex drafts and deniers. Accurate count, twist, and better elongation percentage were observed at 2.80 draft for 16 + 40D CSY and 3.4 draft for 16 + 70D CSY, but a higher imperfection index (IPI) value was obtained on those drafts. The strength of the denim fabric prepared with 16 + 40D CSY and 16 + 70D CSY were higher at 2.8 and 3.6 drafts, respectively. Higher shrinkage (%), ends per inch (EPI), and fabric weight of denim fabric was obtained after washing compared to before washing. The width of both fabrics decreased when the fabric was washed. Exploring various drafts of core material and their correlations with yarn and fabric properties provides valuable insights for textile manufacturers seeking to produce denim fabrics with optimum quality.

13.
J Mech Behav Biomed Mater ; 150: 106340, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-38147762

RÉSUMÉ

The mechanical, thermal, and biological performance of fabrics manufactured with hybrid PLA/PCL commingled yarns were studied. Commingled hybrid yarns take advantage of the higher elastic modulus of PLA and the higher ductility and toughness of PCL to produce yarns and fabrics with high strength and ductility that is transferred to the woven textiles. Furthermore, PLA and PCL exhibit different degradation rates and also allow to tailor this property. Degradation of the textiles was carried out in phosphate-buffered saline solution for up to 160 days at 37 °C and 50 °C (accelerated degradation). Neither the thermal nor the mechanical properties were altered by immersion at 37 °C during 80 days and a slight degradation was observed as a result of chain scission of the PLA fibres after 160 days. However, immersion at 50 °C led to a rapid reduction in strength after 40 days due to the hydrolysis of PLA, and the fabric was highly degraded after 160 days as a result of chain scission in PCL. Finally, while indirect tests did not predict optimal biocompatibility, the direct tests provided a different perspective of the cell interaction between the textile and pre-osteoblasts regarding cell attachment and cell morphology. These results show the potential of hybrid commingled yarns to manufacture textile scaffolds of biodegradable polymers with tailored mechanical properties and good ductility for connective tissue engineering (ligaments and tendons).


Sujet(s)
Polymères , Ingénierie tissulaire , Ingénierie tissulaire/méthodes , Hydrolyse , Polyesters , Textiles
14.
J Neural Eng ; 20(6)2024 01 04.
Article de Anglais | MEDLINE | ID: mdl-38100824

RÉSUMÉ

Objective. The primary challenge faced in the field of neural rehabilitation engineering is the limited advancement in nerve interface technology, which currently fails to match the mechanical properties of small-diameter nerve fascicles. Novel developments are necessary to enable long-term, chronic recording from a multitude of small fascicles, allowing for the recovery of motor intent and sensory signals.Approach. In this study, we analyze the chronic recording capabilities of carbon nanotube yarn electrodes in the peripheral somatic nervous system. The electrodes were surgically implanted in the sciatic nerve's three individual fascicles in rats, enabling the recording of neural activity during gait. Signal-to-noise ratio (SNR) and information theory were employed to analyze the data, demonstrating the superior recording capabilities of the electrodes. Flat interface nerve electrode and thin-film longitudinal intrafascicular electrode electrodes were used as a references to assess the results from SNR and information theory analysis.Main results. The electrodes exhibited the ability to record chronic signals with SNRs reaching as high as 15 dB, providing 12 bits of information for the sciatic nerve, a significant improvement over previous methods. Furthermore, the study revealed that the SNR and information content of the neural signals remained consistent over a period of 12 weeks across three different fascicles, indicating the stability of the interface. The signals recorded from these electrodes were also analyzed for selectivity using information theory metrics, which showed an information sharing of approximately 1.4 bits across the fascicles.Significance. The ability to safely and reliably record from multiple fascicles of different nerves simultaneously over extended periods of time holds substantial implications for the field of neural and rehabilitation engineering. This advancement addresses the limitation of current nerve interface technologies and opens up new possibilities for enhancing neural rehabilitation and control.


Sujet(s)
Nanotubes de carbone , Tissu nerveux , Rats , Animaux , Électrodes implantées , Nerf ischiatique/physiologie , Électrodes , Rapport signal-bruit , Nerfs périphériques/physiologie
15.
J Mech Behav Biomed Mater ; 148: 106214, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37918339

RÉSUMÉ

The design and development of electrospun nanofibrous yarns (ENYs) have attracted intensive attentions in the fields of biomedical textiles and tissue engineering, but the inferior fiber arrangement structure, low yarn eveness, and poor tensile properties of currently-obtained ENYs has been troubled for a long time. In this study, a series of innovative strategies which combined a modified electrospinning method with some traditional textile processes like hot stretching, twisting, and plying, were designed and implemented to generate poly (L-lactic-acid) (PLLA) ENYs with adjustable morphology, structure, and tensile properties. PLLA ENYs made from bead-free and uniform PLLA nanofibers were fabricated by our modified electrospinning method, but the as-spun PLLA ENYs exhibited relatively lower fiber alignment degree and tensile properties. A hot stretching technique was explored to process the primary PLLA ENYs to improve the fiber alignment and crystallinity, resulting in a 779.7% increasement for ultimate stress and a 470.4% enhancement for Young's modulus, respectively. Then, the twisting post-treatment was applied to process as-stretched PLLA ENYs, and the tensile performances of as-twisted ENYs was found to present a trend of first increasing and then decreasing with the increasing of twisting degree. Finally, the PLLA threads made from different numbers of as-stretched PLLA ENYs were also manufactured with a traditional plying process, demonstrating the feasibility of further improving the yarn diameter and tensile properties. In all, this study reported a simple and cost-effective technique roadmap which could generate high performance PLLA nanofiber-constructed yarns or threads with controllable structures like highly aligned fiber orientation, twisted structure, and plied structure.


Sujet(s)
Nanofibres , Nanofibres/composition chimique , Polyesters/composition chimique , Ingénierie tissulaire , Structures d'échafaudage tissulaires/composition chimique
16.
Adv Sci (Weinh) ; 10(29): e2304232, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37607119

RÉSUMÉ

This review is a critical analysis of the current state-of-the-art in core spun yarn textile triboelectric nanogenerators (CSY-T-TENGs) for self-powered smart sensing applications. The rapid expansion of wireless communication, flexible conductive materials, and wearable electronics over the last ten years is now demanding autonomous energy, which has created a new research space in the field of wearable T-TENGs. Current research is exploring T-TENGs made from CSYs as stable and reliable energy harvesters and sensing devices for modern wearable IoT platforms. CSY-TENGs are emerging as an important technology due to its simple structure, low cost, and excellent performance in converting mechanical energy into electrical energy and due to its sensing ability. This paper provides a critical review on current progress, it analyzes the unique advantages of CSYs T-TENGs over conventional T-TENGs, it describes fabrication techniques and discusses the materials used along with their properties and electrical performance characteristics, and it highlights the recent advancements in their integration with self-excitation circuits, charge storage devices and IoT-enabled smart sensing applications, such as environmental and health monitoring. In the conclusion, it discusses the challenges and future directions of CSYs T-TENGs and it provides a future road map for optimization, upscaling, and commercialization of the technology.

17.
Nanotechnology ; 34(50)2023 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-37625384

RÉSUMÉ

Multi-needle water bath electrospinning is one of the most efficient methods used to prepare micro/nanofiber composite yarns. The nanofiber structure can be targeted and regulated to obtain high-performance composite yarns. To explore the effect of the receiving distance on the structure and properties of micro/nanofiber composite yarns, polyacrylonitrile nanofibers were uniformly coated on silver-coated nylon yarn via a four-needle continuous water bath electrospinning method. The electric field distribution at different receiving distances was simulated by ANSYS finite element analysis software, and the effects of electric field distribution on the structure and properties of the micro/nanofiber composite yarns were studied. The results indicated that the peak electric field intensity appeared at the tip of the needles and decreased with the increase in the receiving distance. The receiving distance was constant, and the field intensity was lower when the direction of the centerline of the needle tip was farther away from the tip; however, the field intensity at the conductive core yarn was higher than that in the surrounding area (small spikes). The average field intensity of the small spikes at 180 mm was only 1/4 of that at 80 mm. When the receiving distance increased within a certain range (100∼140 mm), the nanofibers had a smooth surface and good separation, their diameters decreased continuously and the porosity changed inversely. With a further increase in the receiving distance, the nanofibers gradually bonded, their diameter increased and the porosity showed the opposite trend. The coating rate of the nanofibers showed a decreasing trend, and the mechanical properties of the micro/nano composite yarns were improved. When the receiving distance was 100 mm, the porosity reached 38.94%, and the breaking force, breaking elongation and breaking strength were 13.71 ± 1.36 cN, 22.76 ± 6.62% and 0.15 ± 0.02 cN·dtex-1, respectively. Upon consideration of all the above factors, the receiving distance of 100 mm is appropriate.

18.
J Colloid Interface Sci ; 651: 612-621, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37562303

RÉSUMÉ

Programmable smart textiles with adaptive moisture/heat conditioning (MHC) capabilities are globally being sought to meet the requirements of comfort, energy efficiency, and health protection. However, a universal strategy for fabricating truly scalable and customizable MHC textiles is lacking. In this study, we introduce a scalable in situ grafting approach for the continuous fabrication of two series of smart textile yarns with opposite thermoresponsive wetting behaviors. In particular, the wetting transition temperature can be precisely programmed by adjusting the grafting formula, making the yarns highly customizable. The smart yarns demonstrated excellent mechanical strength, whiteness, weavability, biocompatibility, and washability (with more than 60 home washes), comparable to those of regular textile yarns. They can serve as building blocks independently or in combination to create smart textiles with adaptive sweat wicking and intelligent moisture/heat regulation capabilities. A proposed hybrid textile integrating both the two series of smart yarns can offer dry-contact and cooling/keep-warming effects of approximately 1.6/2.8 °C, respectively, in response to changes in ambient temperature. Our method provides a rich array of design options for nonpowered MHC textiles while maintaining a balance between traditional wearing conventions and large-scale production.

19.
Materials (Basel) ; 16(11)2023 May 27.
Article de Anglais | MEDLINE | ID: mdl-37297149

RÉSUMÉ

To improve their interfacial properties, 3D orthogonal woven fabrics with basalt filament yarns were modified with functionalized carboxylated carbon nanotubes (KH570-MWCNTs) and polydopamine (PDA). Fourier infrared spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM) testing were used. It was demonstrated that both methods could successfully modify basalt fiber (BF) 3D woven fabrics. The 3D orthogonal woven composites (3DOWC) were produced with epoxy resin and 3D orthogonal woven fabrics as raw material by the VARTM molding process. The bending properties of the 3DOWC were tested and analyzed by experimental and finite element analysis methods. The results showed that the bending properties of the 3DOWC modified by KH570-MWCNTs and PDA were significantly improved, and the maximum bending loads were increased by 31.5% and 31.0%. The findings of the finite element simulation and the experiment results were in good agreement, and the simulation error value was 3.37%. The correctness of the finite element simulation results and the model's validity further reveal the material's damage situation and damage mechanism in the bending process.

20.
Nanomicro Lett ; 15(1): 162, 2023 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-37386318

RÉSUMÉ

Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient "rocking-chair" ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, [Formula: see text] ions react with carbon nanotube yarn, while Li+ ions react with an Al foil. The intercalation reaction between [Formula: see text] and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of "rocking-chair" type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of "rocking-chair" type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE