Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 155
Filtrer
1.
Curr Probl Cardiol ; 49(10): 102774, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39089408

RÉSUMÉ

BACKGROUND: The aim of our study was to determine a correlation between decrease of levels of atmospheric pollution (as determined by air levels of Particulate Matters with a diameter equal or less to 2.5 microns) and reduced number of hospital admissions and operations for patients with common cardiovascular diseases in Italy. METHODS: We correlated number of hospital admissions and cardiovascular operations and atmospheric levels of PM.2.5 from 2015 to 2019 in Italy. This time interval was chosen because the possibility to analyze data about other established cardiovascular risk factors as reported by the European Union Eurostat. RESULTS: A statistically significant decrease of hospital admissions for cardiovascular and pulmonary emergencies was registered in Italy from 2015 to 2019 (p<0.01). The number also of cardiovascular operations showed a trend towards reduction with improved 30-days results, without reaching a statistically significant correlation (p =0.10). In the period 2015-2019, there was a steady decrease of atmospheric levels of pM2.5, either in urban or rural areas (p<0.01). The decrease of atmospheric levels of PMs2.5 started in 2010 and continued with a steady trend until the year 2019. In the period 2015-2019 exposure of the Italian population to established risk factors for cardiovascular diseases showed a small increase. The number of admissions and operations for non- cardiovascular and non-pulmonary diseases remained unchanged in the period 2015-2019. CONCLUSIONS: The findings of our study underline the possibility that decrease of atmospheric pollution may determine almost immediate decrease of cardiovascular and pulmonary diseases.


Sujet(s)
Pollution de l'air , Maladies cardiovasculaires , Hospitalisation , Matière particulaire , Enregistrements , Humains , Italie/épidémiologie , Maladies cardiovasculaires/épidémiologie , Pollution de l'air/effets indésirables , Pollution de l'air/analyse , Matière particulaire/analyse , Hospitalisation/statistiques et données numériques , Admission du patient/statistiques et données numériques , Admission du patient/tendances , Polluants atmosphériques/analyse , Polluants atmosphériques/effets indésirables , Femelle , Facteurs de risque , Mâle
2.
Leg Med (Tokyo) ; 71: 102508, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39137459

RÉSUMÉ

INTRODUCTION: The postmortem diagnosis of acute myocardial ischemia (AMI) represents a challenging issue in forensic practice. Immunohistochemical studies and gene expression studies are becoming a promising field of research in forensic pathology. The present study aims to evaluate HIF-1α expression through immunohistochemistry (IHC), and mRNA-210 level using real-time polymerase chain reaction (RT-PCR), in order to define if HIF-1α and mRNA-210 in post-mortem myocardium could be adopted in the diagnosis of AMI. MATERIALS AND METHODS: Thirty-five deceased individuals, who underwent forensic autopsy at the Legal Medicine Service of the University of Parma, between 2010 and 2018, were investigated. The cohort was divided into two groups according to the cause of death (sudden deaths caused by AMI vs control cases). Cardiac specimens were collected during autopsy, then samples were processed for morphological evaluation using haematoxylin-eosin staining, for IHC, and for RT-PCR. HIF-1α expression and mRNA-210 levels were investigated. RESULTS: Statistical evaluation demonstrated statistically significant differences in terms of number of IHC positive vessels, leukocytes, and cardiomyocytes between the two groups. Moreover, in the majority of cases, immunostaining positivity was observed only in myocardial and subendocardial samples. With reference to mRNA-210, the difference between the two groups proved to be statistically significant. CONCLUSIONS: The present study indicates that HIF-1α and mRNA-210 in post-mortem cardiac specimens could represent appropriate biomarkers in the diagnosis of AMI. The current study was primarily limited by the scarcity of the cohort, so further research is required to confirm these preliminary observations.

3.
Heliyon ; 10(11): e31923, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38845919

RÉSUMÉ

Salvia miltiorrhiza Bge. (S. miltiorrhiza) is a well-known traditional Chinese medicine for the treatment of cardiovascular diseases. The processing of S. miltiorrhiza requires the raw herbs to sweat first and then dry. The aim of this study was to investigate the anti-acute myocardial ischemia (AMI) of S. miltiorrhiza extracts (including tanshinones and phenolic acids) before and after sweating, and to further explore whether the "sweating" primary processing affected the efficacy of S. miltiorrhiza. The AMI animal model was established by subcutaneous injection of isoprenaline hydrochloride (ISO). After treatment, the cardiac function of rats was evaluated by electrocardiogram (ECG), biochemical, and histochemical analysis. Moreover, the regulation of S. miltiorrhiza extracts on the peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor α (RXRα)/nuclear transcription factor-kappa B (NF-κB) signaling pathway of rats was assessed by the Western blotting. The results showed that sweated and non-sweated S. miltiorrhiza extracts including tanshinones and phenolic acids significantly reduced ST-segment elevation in ECG and the myocardial infarction area in varying degrees. Meanwhile, sweated and non-sweated S. miltiorrhiza reversed the activities of aspartate transaminase (AST), lactic dehydrogenase (LDH), creatine kinase-MB (CK-MB), and superoxide dismutase (SOD), as well as the levels of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in AMI rats. Concurrently, the results of Western blotting revealed that S. miltiorrhiza extracts regulated the PPARα/RXRα/NF-κB signaling pathway to exert an anti-inflammatory effect. Most importantly, sweated S. miltiorrhiza tanshinones extracts are more effective than the non-sweated S. miltiorrhiza, and the anti-inflammatory efficacy of tanshinones extract was also better than that of phenolic acid extract. Although phenolic acid extracts before and after sweating were effective in anti-AMI, there was no significant difference between them. In conclusion, both tanshinones and phenolic acids extracts of sweated and non-sweated S. miltiorrhiza promote anti-oxidative stress and anti-inflammatory against AMI via regulating the PPARα/RXRα/NF-κB signaling pathway. Further, the comparations between sweated and non-sweated S. miltiorrhiza extracts indicate that sweated S. miltiorrhiza tanshinones extracts have better therapeutic effects on AMI.

4.
Heliyon ; 10(9): e30488, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38737264

RÉSUMÉ

Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.

5.
Curr Probl Cardiol ; 49(6): 102540, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38521287

RÉSUMÉ

BACKGROUND: The unexpected virulence of the COVID19 pandemic brought to significant changes of generally accepted therapeutic approaches. The consequences of these changes were difficult to define during the pandemic period. METHODS: We analyzed the National Registries including 97% of hospital admissions in Italy, regarding data describing number of operations for aortic valve implantation or repair, carotid and coronary revascularization, AAA repair, and lower limb arterial reconstruction performed in the period 2015 to 2019 and in the pandemic years 2020, 2021, and 2022. Primary outcomes were number and type of surgical procedures, 30-days operative mortality. RESULTS: During the three years of the pandemic there was a statistically significant increase of the number of all-causes deaths in comparison with the mean of the previous five years (2015-2019). In Italy there was a total increase of all causes-deaths of 251.911 (+105900 in 2020; +66929 in 2021; and +79082 in 2022), and 73% of the excess of deaths was related with COVID19 infection and 27% occurred in COVID 19 negative patients. During the first year of the pandemic, worse clinical outcomes for hospitalized patients with CVD were registered. The medical system responded adequately and in the following two pandemic years clinical outcomes for hospitalized patients were similar with those of the pre-pandemic period. CONCLUSIONS: The unexpected virulence of COVID19 pandemic determined worse clinical outcomes for patients with CVD during the first year. The adopted preventive measures allowed in the following two pandemic years improved clinical outcomes, similar with those of the pre-pandemic period.


Sujet(s)
COVID-19 , Maladies cardiovasculaires , Sujet âgé , Femelle , Humains , Mâle , Maladies cardiovasculaires/épidémiologie , Maladies cardiovasculaires/thérapie , COVID-19/épidémiologie , Mortalité hospitalière , Hospitalisation/statistiques et données numériques , Italie/épidémiologie , Enregistrements , SARS-CoV-2
7.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1026881

RÉSUMÉ

Objective To observe the effects of electroacupuncture(EA)on glutamate(Glu),metabotropic glutamate receptor 2/3(mGluR2/3)and apoptosis related proteins expression in hippocampus in rats with acute myocardial ischemia(AMI);To explore the mechanism of EA against AMI.Methods Totally 50 SD rats were randomly divided into sham-operation group,model group,EA group and inhibitor group,with 10 rats in each group.Except for the sham-operation group,the rats were treated with ligation at the left anterior descending coronary artery to establish AMI model.The rats in the EA group was treated with EA at"Shenmen"and"Tongli",30 minutes each time,once a day for 3 consecutive days.The rats in the inhibitor group were treated with injection of LY341459 via the lateral ventricle 30 min after modeling.HE staining was used to observe myocardial tissue morphology,and ELISA was used to detect Caspase-3 activity in myocardial tissue and Glu content in hippocampal tissue,immunofluorescence staining was used to detect mGluR2/3 expression in hippocampal tissue,TUNEL staining was used to detect apoptosis in hippocampal tissue cells,Western blot was used to detect the expressions of PI3K,Akt,and Caspase-3 protein in hippocampal tissue.Results Compared with the sham-operation group,the myocardial cells of the model group rats showed sparse and swelling with severe infiltration of inflammatory cells;the activity of Caspase-3 in myocardial tissue significantly increased,and the Glu content,positive expression of mGluR2/3,number of apoptotic cells in hippocampal tissue significantly increased(P<0.01),and the expressions of PI3K and Akt proteins in hippocampal tissue were significantly decreased,while the expression of Caspase-3 protein significantly increased(P<0.01).Compared with the model group,myocardial cell edema and inflammatory cell infiltration were reduced in the EA group and inhibitor group,the activity of Caspase-3 in myocardial tissue was significantly decreased,the Glu content,positive expression of mGluR2/3,and number of apoptotic cells in hippocampal tissue were significantly reduced(P<0.01),the expressions of PI3K and Akt proteins in hippocampal tissue significantly increased,while the expression of Caspase-3 protein significantly decreased(P<0.01).Conclusion EA can improve myocardial injury in AMI rats,and its mechanism may be related to activation of PI3K/Akt signaling pathway,inhibition of hippocampal mGluR2/3 overexpression,reduction of Glu accumulation,inhibition of apoptosis of hippocampal neurons and reduction of neurotoxicity.

8.
Basic Res Cardiol ; 118(1): 49, 2023 11 13.
Article de Anglais | MEDLINE | ID: mdl-37955687

RÉSUMÉ

There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.


Sujet(s)
Défaillance cardiaque , Infarctus du myocarde , Humains , Myocarde , Myocytes cardiaques , Mitochondries
9.
Vascul Pharmacol ; 153: 107230, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37739329

RÉSUMÉ

Hypertension represents a major contributor to the development of coronary artery disease. The pathophysiological mechanisms underlying the link between hypertension and CAD are complex and include overactivation of neurohormones, accelerated development of the atherosclerotic plaque, endothelial dysfunction, altered intramyocardial coronary circulation, hypertension-mediated cardiac and vascular damage and the relationship between arterial stiffness and coronary perfusion. Blood pressure (BP) reduction is associated with a significant decrease of the risk of coronary events. Therapeutic interventions targeted to reduce BP and to improve endothelial function and coronary microvascular dysfunction, as well as to prevent left ventricular hypertrophy and dysfunction, contribute to reduce the burden of coronary disease and its acute ischemic manifestations.


Sujet(s)
Maladie des artères coronaires , Hypertension artérielle , Humains , Maladie des artères coronaires/complications , Myocarde , Hypertrophie ventriculaire gauche/étiologie , Circulation coronarienne/physiologie
10.
Int J Cardiol ; 391: 131291, 2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-37619880

RÉSUMÉ

BACKGROUND: Myocardial ischemia induces intracellular accumulation of non-glycosylated apolipoprotein J that results in a reduction of circulating glycosylated ApoJ (ApoJ-Glyc). The latter has been suggested to be a marker of transient myocardial ischemia. OBJECTIVE: This proof-of-concept clinical study aimed to assess whether changes in circulating ApoJ-Glyc could detect myocardial ischemia in patients attending the emergency department (ED) with chest pain suggestive of acute coronary syndrome (ACS). METHODS: In suspected ACS patients, EDICA (Early Detection of Myocardial Ischemia in Suspected Acute Coronary Syndromes by ApoJ-Glyc a Novel Pathologically based Ischemia Biomarker), a multicentre, international, cohort study assessed changes in 2 glycosylated variants of ApoJ-Glyc, (ApoJ-GlycA2 and ApoJ-GlycA6), in serum samples obtained at ED admission (0 h), and 1 h and 3 h thereafter, blinded to the clinical diagnosis (i.e. STEMI, NSTEMI, unstable angina, non-ischemic). RESULTS: 404 patients were recruited; 291 were given a clinical diagnosis of "non-ischemic" chest pain and 113 were considered to have had an ischemic event. ApoJ-GlycA6 was lower on admission in ischemic compared with "non-ischemic" patients (66 [46-90] vs. 73 [56-95] µg/ml; P = 0.04). 74% of unstable angina patients (all with undetectable hs-Tn), had ischemic changes in ApoJ-Glyc at 0 h and 89% at 1 h. Initially low ApoJ-Glyc levels in 62 patients requiring coronary revascularization increased significantly after successful percutaneous intervention. CONCLUSIONS: Circulating ApoJ-Glyc concentrations decrease early in ED patients with myocardial ischemia compared with "non-ischemic" patients, even in the absence of troponin elevations. ApoJ-Glyc may be a useful marker of myocardial ischemia in the ED setting.

11.
J Ethnopharmacol ; 317: 116871, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-37393028

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional medicine, both Scutellaria baicalensis Georgi (SBG) and the traditional formulas composed of it have been used to treat a wide range of diseases, including cancer and cardiovascular. Wogonoside (Wog) is the biologically active flavonoid compound extracted from the root of SBG, with potential cardiovascular protective effects. However, the mechanisms underlying the protective effect of Wog on acute myocardial ischemia (AMI) have not yet been clearly elucidated. AIM OF THE STUDY: To explore the protective mechanism of Wog on AMI rats by comprehensively integrating traditional pharmacodynamics, metabolomics, and network pharmacology. METHODS: The rat was pretreatment with Wog at a dose of 20 mg/kg/d and 40 mg/kg/d once daily for 10 days and then ligated the left anterior descending coronary artery of rats to establish the AMI rat model. Electrocardiogram (ECG), cardiac enzyme levels, heart weight index (HWI), Triphenyltetrazolium chloride (TTC) staining, and histopathological analyses were adopted to evaluate the protective effect of Wog on AMI rats. Moreover, a serum metabolomic-based UHPLC-Q-Orbitrap MS approach was performed to find metabolic biomarkers and metabolic pathways, and network pharmacology analysis was applied to predict targets and pathways of Wog in treating AMI. Then, the network pharmacology and metabolomic results were integrated to elucidate the mechanism of Wog in treating AMI. Finally, RT- PCR was used to detect the mRNA expression levels of PTGS1, PTGS2, ALOX5, and ALOX15 to validate the result of integrated metabolomics and network analysis. RESULTS: Pharmacodynamic studies suggest that Wog could effectively prevent the ST-segment of electrocardiogram elevation, reduce the myocardial infarct size, heart weight index, and cardiac enzyme levels, and alleviate cardiac histological damage in AMI rats. Metabolomics analysis showed that the disturbances of metabolic profile in AMI rats were partly corrected by Wog and the cardio-protection effects on AMI rats involved 32 differential metabolic biomarkers and 4 metabolic pathways. In addition, the integrated analysis of network pharmacology and metabolomics showed that 7 metabolic biomarkers, 6 targets, and 6 crucial pathways were the main mechanism for the therapeutic application of Wog for AMI. Moreover, the results of RT-PCR showed that PTGS1, PTGS2, ALOX5, and ALOX15 mRNA expression levels were reduced after treatment with Wog. CONCLUSION: Wog exerts cardio-protection effects on AMI rats via the regulation of multiple metabolic biomarkers, multiple targets, and multiple pathways, our current study will provide strong scientific evidence supporting the therapeutic application of Wog for AMI.


Sujet(s)
Médicaments issus de plantes chinoises , Ischémie myocardique , Rats , Animaux , Cyclooxygenase 2 , Pharmacologie des réseaux , Médicaments issus de plantes chinoises/pharmacologie , Rat Sprague-Dawley , Ischémie myocardique/traitement médicamenteux , Métabolomique/méthodes , Marqueurs biologiques , ARN messager
12.
Physiol Meas ; 44(8)2023 08 24.
Article de Anglais | MEDLINE | ID: mdl-37376978

RÉSUMÉ

Objectives. Acute myocardial ischemia in the setting of acute coronary syndrome (ACS) may lead to myocardial infarction. Therefore, timely decisions, already in the pre-hospital phase, are crucial to preserving cardiac function as much as possible. Serial electrocardiography, a comparison of the acute electrocardiogram with a previously recorded (reference) ECG of the same patient, aids in identifying ischemia-induced electrocardiographic changes by correcting for interindividual ECG variability. Recently, the combination of deep learning and serial electrocardiography provided promising results in detecting emerging cardiac diseases; thus, the aim of our current study is the application of our novel Advanced Repeated Structuring and Learning Procedure (AdvRS&LP), specifically designed for acute myocardial ischemia detection in the pre-hospital phase by using serial ECG features.Approach. Data belong to the SUBTRACT study, which includes 1425 ECG pairs, 194 (14%) ACS patients, and 1035 (73%) controls. Each ECG pair was characterized by 28 serial features that, with sex and age, constituted the inputs of the AdvRS&LP, an automatic constructive procedure for creating supervised neural networks (NN). We created 100 NNs to compensate for statistical fluctuations due to random data divisions of a limited dataset. We compared the performance of the obtained NNs to a logistic regression (LR) procedure and the Glasgow program (Uni-G) in terms of area-under-the-curve (AUC) of the receiver-operating-characteristic curve, sensitivity (SE), and specificity (SP).Main Results. NNs (median AUC = 83%, median SE = 77%, and median SP = 89%) presented a statistically (Pvalue lower than 0.05) higher testing performance than those presented by LR (median AUC = 80%, median SE = 67%, and median SP = 81%) and by the Uni-G algorithm (median SE = 72% and median SP = 82%).Significance. In conclusion, the positive results underscore the value of serial ECG comparison in ischemia detection, and NNs created by AdvRS&LP seem to be reliable tools in terms of generalization and clinical applicability.


Sujet(s)
Cardiopathies , Infarctus du myocarde , Ischémie myocardique , Humains , Ischémie myocardique/diagnostic , Infarctus du myocarde/diagnostic , Électrocardiographie/méthodes , 29935
13.
Am J Physiol Heart Circ Physiol ; 325(1): H54-H65, 2023 07 01.
Article de Anglais | MEDLINE | ID: mdl-37145956

RÉSUMÉ

Ventricular arrhythmia (VT/VF) can complicate acute myocardial ischemia (AMI). Regional instability of repolarization during AMI contributes to the substrate for VT/VF. Beat-to-beat variability of repolarization (BVR), a measure of repolarization lability increases during AMI. We hypothesized that its surge precedes VT/VF. We studied the spatial and temporal changes in BVR in relation to VT/VF during AMI. In 24 pigs, BVR was quantified on 12-lead electrocardiogram recorded at a sampling rate of 1 kHz. AMI was induced in 16 pigs by percutaneous coronary artery occlusion (MI), whereas 8 underwent sham operation (sham). Changes in BVR were assessed at 5 min after occlusion, 5 and 1 min pre-VF in animals that developed VF, and matched time points in pigs without VF. Serum troponin and ST deviation were measured. After 1 mo, magnetic resonance imaging and VT induction by programmed electrical stimulation were performed. During AMI, BVR increased significantly in inferior-lateral leads correlating with ST deviation and troponin increase. BVR was maximal 1 min pre-VF (3.78 ± 1.36 vs. 5 min pre-VF, 1.67 ± 1.56, P < 0.0001). After 1 mo, BVR was higher in MI than in sham and correlated with the infarct size (1.43 ± 0.50 vs. 0.57 ± 0.30, P = 0.009). VT was inducible in all MI animals and the ease of induction correlated with BVR. BVR increased during AMI and temporal BVR changes predicted imminent VT/VF, supporting a possible role in monitoring and early warning systems. BVR correlated to arrhythmia vulnerability suggesting utility in risk stratification post-AMI.NEW & NOTEWORTHY The key finding of this study is that BVR increases during AMI and surges before ventricular arrhythmia onset. This suggests that monitoring BVR may be useful for monitoring the risk of VF during and after AMI in the coronary care unit settings. Beyond this, monitoring BVR may have value in cardiac implantable devices or wearables.


Sujet(s)
Infarctus du myocarde , Ischémie myocardique , Tachycardie ventriculaire , Animaux , Suidae , Troubles du rythme cardiaque/étiologie , Troubles du rythme cardiaque/complications , Infarctus du myocarde/complications , Ischémie myocardique/complications , Électrocardiographie/effets indésirables , Coeur , Fibrillation ventriculaire
14.
Immun Inflamm Dis ; 11(3): e798, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36988260

RÉSUMÉ

Coronavirus disease 2019 (COVID-19) is a novel pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been shown that SARS-CoV-2 infection-induced inflammatory and oxidative stress and associated endothelial dysfunction may lead to the development of acute coronary syndrome (ACS). Therefore, this review aimed to ascertain the link between severe SARS-CoV-2 infection and ACS. ACS is a spectrum of acute myocardial ischemia due to a sudden decrease in coronary blood flow, ranging from unstable angina to myocardial infarction (MI). Primary or type 1 MI (T1MI) is mainly caused by coronary plaque rupture and/or erosion with subsequent occlusive thrombosis. Secondary or type 2 MI (T2MI) is due to cardiac and systemic disorders without acute coronary atherothrombotic disruption. Acute SARS-CoV-2 infection is linked with the development of nonobstructive coronary disorders such as coronary vasospasm, dilated cardiomyopathy, myocardial fibrosis, and myocarditis. Furthermore, SARS-CoV-2 infection is associated with systemic inflammation that might affect coronary atherosclerotic plaque stability through augmentation of cardiac preload and afterload. Nevertheless, major coronary vessels with atherosclerotic plaques develop minor inflammation during COVID-19 since coronary arteries are not initially and primarily targeted by SARS-CoV-2 due to low expression of angiotensin-converting enzyme 2 in coronary vessels. In conclusion, SARS-CoV-2 infection through hypercytokinemia, direct cardiomyocyte injury, and dysregulation of the renin-angiotensin system may aggravate underlying ACS or cause new-onset T2MI. As well, arrhythmias induced by anti-COVID-19 medications could worsen underlying ACS.


Sujet(s)
Syndrome coronarien aigu , COVID-19 , Infarctus du myocarde , Plaque d'athérosclérose , Humains , COVID-19/complications , Syndrome coronarien aigu/complications , SARS-CoV-2 , Infarctus du myocarde/complications , Inflammation , Plaque d'athérosclérose/complications
15.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1043-1053, 2023 Feb.
Article de Chinois | MEDLINE | ID: mdl-36872275

RÉSUMÉ

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


Sujet(s)
Dalbergia , Lésions traumatiques du coeur , Ischémie myocardique , Mâle , Animaux , Rats , Rat Sprague-Dawley , Métabolomique , Coeur , MB Creatine kinase
16.
Front Physiol ; 14: 1100471, 2023.
Article de Anglais | MEDLINE | ID: mdl-36744034

RÉSUMÉ

The study of cardiac electrophysiology is built on experimental models that span all scales, from ion channels to whole-body preparations. Novel discoveries made at each scale have contributed to our fundamental understanding of human cardiac electrophysiology, which informs clinicians as they detect, diagnose, and treat complex cardiac pathologies. This expert review describes an engineering approach to developing experimental models that is applicable across scales. The review also outlines how we applied the approach to create a set of multiscale whole-body experimental models of cardiac electrophysiology, models that are driving new insights into the response of the myocardium to acute ischemia. Specifically, we propose that researchers must address three critical requirements to develop an effective experimental model: 1) how the experimental model replicates and maintains human physiological conditions, 2) how the interventions possible with the experimental model capture human pathophysiology, and 3) what signals need to be measured, at which levels of resolution and fidelity, and what are the resulting requirements of the measurement system and the access to the organs of interest. We will discuss these requirements in the context of two examples of whole-body experimental models, a closed chest in situ model of cardiac ischemia and an isolated-heart, torso-tank preparation, both of which we have developed over decades and used to gather valuable insights from hundreds of experiments.

17.
Int J Legal Med ; 137(1): 169-180, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-35348878

RÉSUMÉ

Acute myocardial ischemia (AMI) remains the leading cause of death worldwide, and the post-mortem diagnosis of AMI represents a current challenge for both clinical and forensic pathologists. In the present study, the untargeted metabolomics based on ultra-performance liquid chromatography combined with high-resolution mass spectrometry was applied to analyze serum metabolic signatures from AMI in a rat model (n = 10 per group). A total of 28 endogenous metabolites in serum were significantly altered in AMI group relative to control and sham groups. A set of machine learning algorithms, namely gradient tree boosting (GTB), support vector machine (SVM), random forest (RF), logistic regression (LR), and multilayer perceptron (MLP) models, was used to screen the more valuable metabolites from 28 metabolites to optimize the biomarker panel. The results showed that classification accuracy and performance of MLP model were better than other algorithms when the metabolites consisting of L-threonic acid, N-acetyl-L-cysteine, CMPF, glycocholic acid, L-tyrosine, cholic acid, and glycoursodeoxycholic acid. Finally, 17 blood samples from autopsy cases were applied to validate the classification model's value in human samples. The MLP model constructed based on rat dataset achieved accuracy of 88.23%, and ROC of 0.89 for predicting AMI type II in autopsy cases of sudden cardiac death. The results demonstrated that MLP model based on 7 molecular biomarkers had a good diagnostic performance for both AMI rats and autopsy-based blood samples. Thus, the combination of metabolomics and machine learning algorithms provides a novel strategy for AMI diagnosis.


Sujet(s)
Algorithmes , Ischémie myocardique , Humains , Rats , Animaux , Apprentissage machine , Ischémie myocardique/diagnostic , Métabolomique , Marqueurs biologiques , Machine à vecteur de support
18.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-970576

RÉSUMÉ

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


Sujet(s)
Mâle , Animaux , Rats , Rat Sprague-Dawley , Dalbergia , Ischémie myocardique , Métabolomique , Coeur , Lésions traumatiques du coeur , MB Creatine kinase
19.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-36555270

RÉSUMÉ

Acute myocardial infarction (AMI) is one of the major leading causes of death in humans globally. Recently, increased levels of recruited macrophages and AGE-albumin were observed in the hearts of humans and animals with acute myocardial infarction. Thus, the purposes of this study were to investigate whether the elevated levels of AGE-albumin from activated macrophage cells are implicated in ischemia-induced cardiomyocyte death and to develop therapeutic strategies for AMI based on its underlying molecular mechanisms with respect to AGEs. The present study demonstrated that activated macrophages and AGE-albumin were observed in heart tissues obtained from humans and rats with AMI incidences. In the cellular model of AMI, it was found that increased expression of AGE-albumin was shown to be co-localized with macrophages, and the presence of AGE-albumin led to increased expression of RAGE through the mitogen-activated protein kinase pathway. After revealing cardiomyocyte apoptosis induced by toxicity of the AGE-RAGE system, sRAGE-secreting MSCs were generated using the CRISPR/Cas9 platform to investigate the therapeutic effects of sRAGE-MSCs in an AMI rat model. Gene-edited sRAGE-MSCs showed greater therapeutic effects against AMI pathogenesis in rat models compared to mock MSCs, and promising results of the functional improvement of stem cells could result in significant improvements in the clinical management of cardiovascular diseases.


Sujet(s)
Infarctus du myocarde , Rodentia , Humains , Rats , Animaux , Infarctus du myocarde/métabolisme , Transduction du signal , Reperfusion , Albumines
20.
Zhen Ci Yan Jiu ; 47(11): 955-61, 2022 Nov 25.
Article de Chinois | MEDLINE | ID: mdl-36453671

RÉSUMÉ

OBJECTIVE: To observe the effect of different intensities of electroacupuncture (EA) preconditioning on car-diac function and polarization state of macrophages in mice with acute myocardial ischemia (AMI), so as to explore its possible mechanism underlying improvement of AMI. METHODS: A total of 50 male C57BL/6J mice were randomly divided into sham ope-ration, AMI model, and EA pretreatment groups (0.5 mA, 1 mA, 3 mA subgroups), with 10 mice in each group/subgroup. The mice in the EA pretreatment groups were subjected to EA stimulation of bilateral "Neiguan"(PC6) with 0.5, 1.0 and 3 mA respectively and frequency of 2 Hz/15 Hz for 20 min, once a day, for 3 days. The acute myocardial ischemia model was established by ligating the anterior descending branch (ADB) of the left coronary artery, while the sham operation only had a surgical suture trans-passed below the ADB but without ligation. The myocardial infarction area was measured after TTC staining, and the cardiac function ï¼»left ventricular ejection fraction (EF), short-axis contraction rate (FS)ï¼½ was detected by using echocardiography. The M1 macrophages were labeled with CD11b+F480+CD206low, M2 macrophages were labeled with CD11b+F480+CD206high and detected by using flow cytometry, and the expression levels of myocardial interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), Toll-like receptor-4 (TLR4) proteins were detected by using Western blot. RESULTS: Compared with the sham operation group, the model group had a significant increase in the infarction area (P<0.000 1), number of cardiac macrophages and percentage of M1 type macrophages (P<0.000 1), and the expression levels of myocardial IL-1ß, TNF-α, TLR4 proteins (P<0.001, P<0.01), and a remarkable decrease in the levels of EF, FS and the percentage of M2 type macrophages (P<0.000 1). In contrast to those of the model group, the area of myocardial infarction (P<0.000 1, P<0.01), expression levels of myocardial IL-1ß, TNF-α, TLR4 proteins (P<0.01, P<0.05, P<0.001) in the 0.5 mA, 1 mA and 3 mA groups, number of macrophages and percentage of M1 macrophages (P<0.05) in the 1 mA group were significantly decreased, while the levels of EF and FS (P<0.000 1, P<0.05, P<0.001) in the 3 EA groups, and percentage of M2 macrophage (P<0.05) in the 1 mA group were significantly increased. Comparison among the 3 EA groups displayed that the effects of 1 mA group were significantly superior to those of 0.5 and 3 mA groups in up-regulating EF and FS (P<0.01, P<0.001), and in down-regulating the area of infarct myocardium (P<0.01, P<0.000 1), and the expression of TLR4 protein (P<0.01), and 0.5 mA group in the expression of IL-1ß and TNF-α proteins (P<0.05). CONCLUSION: EA preconditioning with electrical current intensities of 0.5 mA, 1 mA and 3 mA can effectively reduce myocardial infarction size, improve cardiac function in mice with AMI, which may be related with its effects in reducing the number of cardiac macrophages and down-regulating the expression of myocardial IL-1ß, TNF-α and TLR4 proteins. The therapeutic effect of 1 mA is better than that of 0.5 and 3 mA.


Sujet(s)
Électroacupuncture , Infarctus du myocarde , Ischémie myocardique , Mâle , Souris , Animaux , Souris de lignée C57BL , Débit systolique , Facteur de nécrose tumorale alpha/génétique , Récepteur de type Toll-4 , Fonction ventriculaire gauche , Ischémie myocardique/génétique , Ischémie myocardique/thérapie , Macrophages
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE