Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 787
Filtrer
1.
Mol Ther Oncol ; 32(3): 200854, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39224504

RÉSUMÉ

Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.

2.
Immunotherapy ; : 1-12, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39229803

RÉSUMÉ

Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.


Colorectal cancer (CRC) is a significant cause of cancer cases and cancer-related deaths globally. Current treatments for CRC have limitations; hence, there is a need for new and innovative approaches. Recent progress in cancer research has led to the development of personalized targeted therapies and immunotherapies, that is, treatments that use the body's immune system to fight cancer. T cell-based therapy is a type of immunotherapy that has shown promising outcomes in cancer treatment. This therapy involves modifying a type of immune cell called T cells to specifically target cancer cells. In this review, the focus is on the landscape of engineered T cells as a potential option for the treatment of CRC, as well as their challenges and current advancements. Generally, additional research and clinical trials are needed to fully explore its safety and efficacy in improving patient outcomes.

3.
Front Immunol ; 15: 1433315, 2024.
Article de Anglais | MEDLINE | ID: mdl-39238638

RÉSUMÉ

Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.


Sujet(s)
Tumeurs colorectales , Inhibiteurs de points de contrôle immunitaires , Immunothérapie , Humains , Tumeurs colorectales/thérapie , Tumeurs colorectales/immunologie , Immunothérapie/méthodes , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Animaux , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Thérapie virale de cancers/méthodes , Virus oncolytiques/immunologie
4.
Expert Opin Ther Targets ; : 1-9, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235181

RÉSUMÉ

INTRODUCTION: The bone marrow microenvironment (BME) is critical for healthy hematopoiesis and is often disrupted in hematologic malignancies. Tumor-associated macrophages (TAMs) are a major cell type in the tumor microenvironment (TME) and play a significant role in tumor growth and progression. Targeting TAMs and modulating their polarization is a promising strategy for cancer therapy. AREAS COVERED: In this review, we discuss the importance of TME and different multiple possible targets to modulate immunosuppressive TAMs such as: CD123, Sphingosine 1-Phosphate Receptors, CD19/CD1d, CCR4/CCL22, CSF1R (CD115), CD24, CD40, B7 family proteins, MARCO, CD47, CD163, CD204, CD206 and folate receptors. EXPERT OPINION: Innovative approaches to combat the immunosuppressive milieu of the tumor microenvironment in hematologic malignancies are of high clinical significance and may lead to increased survival, improved quality of life, and decreased toxicity of cancer therapies. Standard procedures will likely involve a combination of CAR T/NK-cell therapies with other treatments, leading to more comprehensive cancer care.

5.
Future Oncol ; : 1-9, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39129675

RÉSUMÉ

The SWI/SNF complex is a chromatin remodeling complex comprised by several proteins such as SMARCA4 or SMARCB1. Mutations in its components can lead to the development of aggressive rhabdoid tumors such as epithelioid sarcoma, malignant rhabdoid tumor or small cell carcinoma of the ovary hypercalcemic type, among others. These malignancies tend to affect young patients and their prognosis is poor given the lack of effective treatments. Characteristically, these tumors are highly infiltrated by TILs, suggesting that some lymphocytes are recognizing tumor antigens. The use of those TILs as a therapeutic strategy is a promising approach worth exploring. Here, we report the clinical protocol of the TILTS study, a Phase II clinical trial assessing personalized adoptive cell therapy with TILs in patients affected by these tumor types.Clinical Trial Registration: 2023-504632-17-00 (www.clinicaltrialsregister.eu) (ClinicalTrials.gov).


[Box: see text].

6.
Front Mol Biosci ; 11: 1403021, 2024.
Article de Anglais | MEDLINE | ID: mdl-39086722

RÉSUMÉ

Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.

7.
BMC Cancer ; 24(1): 980, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39118069

RÉSUMÉ

BACKGROUND: Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS: By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS: When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION: We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.


Sujet(s)
Herpèsvirus humain de type 4 , Lymphocytes T cytotoxiques , Humains , Lymphocytes T cytotoxiques/immunologie , Herpèsvirus humain de type 4/immunologie , Infections à virus Epstein-Barr/immunologie , Infections à virus Epstein-Barr/virologie , Interleukine-2/métabolisme , Interleukine-2/pharmacologie , Agranulocytes/immunologie , Agranulocytes/virologie , Interleukine-15/métabolisme , Interféron alpha/métabolisme , Cytotoxicité immunologique , Cancer du nasopharynx/virologie , Cancer du nasopharynx/immunologie , Cancer du nasopharynx/anatomopathologie , Tumeurs du rhinopharynx/immunologie , Tumeurs du rhinopharynx/virologie , Tumeurs du rhinopharynx/anatomopathologie , Activation des lymphocytes/immunologie , Immunothérapie adoptive/méthodes
8.
Rinsho Ketsueki ; 65(7): 652-661, 2024.
Article de Japonais | MEDLINE | ID: mdl-39098016

RÉSUMÉ

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigm for refractory/relapsed (R/R) hematologic malignancies, with six products approved for B-cell tumors and multiple myeloma as of the end of 2023. However, adoptive cell therapy (ACT) for solid tumors is hindered by critical challenges in multiple areas, including (1) lack of appropriate tumor-specific antigens, (2) inefficient T-cell trafficking and infiltration into the tumor microenvironment, and (3) immunosuppressive signals within the tumor milieu that induce T-cell dysfunction. This review examines the existing clinical trial data on ACT for solid tumors to elucidate the current landscape of ACT development for solid tumors. It also outlines the trajectory of ACT for solid tumors and integrative approaches to overcoming the complex tumor microenvironment.


Sujet(s)
Tumeurs , Microenvironnement tumoral , Humains , Tumeurs/thérapie , Tumeurs/immunologie , Microenvironnement tumoral/immunologie , Immunothérapie adoptive/méthodes , Thérapie cellulaire et tissulaire/méthodes , Lymphocytes T/immunologie , Essais cliniques comme sujet , Récepteurs chimériques pour l'antigène/immunologie
9.
J Immunother Cancer ; 12(8)2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39151930

RÉSUMÉ

BACKGROUND: Antitumor effect of chimeric antigen receptor (CAR)-T cells against solid tumors is limited due to various factors, such as low infiltration rate, poor expansion capacity, and exhaustion of T cells within the tumor. NR4A transcription factors have been shown to play important roles in T-cell exhaustion in mice. However, the precise contribution of each NR4a factor to human T-cell differentiation remains to be clarified. METHODS: In this study, we deleted NR4A family factors, NR4A1, NR4A2, and NR4A3, in human CAR-T cells recognizing human epidermal growth factor receptor type 2 (HER2) by using the CRISPR/Cas9 system. We induced T-cell exhaustion in these cells in vitro through repeated co-culturing of CAR-T cells with Her2+A549 lung adenocarcinoma cells and evaluated cell surface markers such as memory and exhaustion phenotypes, proliferative capacity, cytokine production and metabolic activity. We validated the antitumor toxicity of NR4A1/2/3 triple knockout (TKO) CAR-T cells in vivo by transferring CAR-T cells into A549 tumor-bearing immunodeficient mice. RESULTS: Human NR4A-TKO CAR-T cells were resistant against exhaustion induced by repeated antigen stimulation in vitro, and maintained higher tumor-killing activity both in vitro and in vivo compared with control CAR-T cells. A comparison of the effectiveness of NR4A single, double, and TKOs demonstrated that triple KO was the most effective in avoiding exhaustion. Furthermore, a strong enhancement of antitumor effects by NR4A TKO was also observed in T cells from various donors including aged persons. Mechanistically, NR4A TKO CAR-T cells showed enhanced mitochondrial oxidative phosphorylation, therefore could persist for longer periods within the tumors. CONCLUSIONS: NR4A factors regulate CAR-T cell persistence and stemness through mitochondrial gene expression, therefore NR4A is a highly promising target for the generation of superior CAR-T cells against solid tumors.


Sujet(s)
Immunothérapie adoptive , Mitochondries , Récepteurs chimériques pour l'antigène , Humains , Animaux , Souris , Mitochondries/métabolisme , Immunothérapie adoptive/méthodes , Récepteurs chimériques pour l'antigène/métabolisme , Récepteurs chimériques pour l'antigène/immunologie , Membre-1 du groupe A de la sous-famille-4 de récepteurs nucléaires/métabolisme , Membre-1 du groupe A de la sous-famille-4 de récepteurs nucléaires/génétique , Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires/métabolisme , Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires/génétique , Récepteurs des hormones thyroïdiennes/métabolisme , Récepteurs des hormones thyroïdiennes/génétique , Tumeurs/immunologie , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe , Femelle , Protéines de liaison à l'ADN , Récepteurs aux stéroïdes
10.
Mol Cell Proteomics ; 23(9): 100825, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111711

RÉSUMÉ

Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.

11.
Front Immunol ; 15: 1404861, 2024.
Article de Anglais | MEDLINE | ID: mdl-39192978

RÉSUMÉ

Background: Glioblastoma (GBM) is a poor prognosis grade 4 glioma. After surgical resection, the standard therapy consists of concurrent radiotherapy (RT) and temozolomide (TMZ) followed by TMZ alone. Our previous data on melanoma patients showed that Dendritic Cell vaccination (DCvax) could increase the amount of intratumoral-activated cytotoxic T lymphocytes. Methods: This is a single-arm, monocentric, phase II trial in two steps according to Simon's design. The trial aims to evaluate progression-free survival (PFS) at three months and the safety of a DCvax integrated with standard therapy in resected GBM patients. DCvax administration begins after completion of RT-CTwith weekly administrations for 4 weeks, then is alternated monthly with TMZ cycles. The primary endpoints are PFS at three months and safety. One of the secondary objectives is to evaluate the immune response both in vitro and in vivo (DTH skin test). Results: By December 2022, the first pre-planned step of the study was concluded with the enrollment, treatment and follow up of 9 evaluable patients. Two patients had progressed within three months after leukapheresis, but none had experienced DCvax-related G3-4 toxicities Five patients experienced a positive DTH test towards KLH and one of these also towards autologous tumor homogenate. The median PFS from leukapheresis was 11.3 months and 12.2 months from surgery. Conclusions: This combination therapy is well-tolerated, and the two endpoints required for the first step have been achieved. Therefore, the study will proceed to enroll the remaining 19 patients. (Eudract number: 2020-003755-15 https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-003755-15/IT).


Sujet(s)
Tumeurs du cerveau , Vaccins anticancéreux , Cellules dendritiques , Glioblastome , Humains , Glioblastome/thérapie , Glioblastome/immunologie , Glioblastome/mortalité , Vaccins anticancéreux/immunologie , Vaccins anticancéreux/usage thérapeutique , Vaccins anticancéreux/administration et posologie , Vaccins anticancéreux/effets indésirables , Cellules dendritiques/immunologie , Cellules dendritiques/transplantation , Adulte d'âge moyen , Femelle , Mâle , Adulte , Sujet âgé , Tumeurs du cerveau/thérapie , Tumeurs du cerveau/immunologie , Tumeurs du cerveau/mortalité , Témozolomide/usage thérapeutique , Témozolomide/administration et posologie , Survie sans progression
12.
Curr Protoc ; 4(8): e1107, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39166803

RÉSUMÉ

CAR-T cell therapy has emerged as a potent and effective tool in the immunotherapy of refractory cancers. However, challenges exist in their clinical application, necessitating extensive preclinical research to optimize their function. Various preclinical in vitro and in vivo models have been proposed for such purpose; among which immunocompetent mouse models serve as an invaluable tool in studying host immune interactions within a more realistic simulation of the tumor milieu. We hereby describe a standardized protocol for the generation of high-titer γ-retroviral vectors through transfection of the HEK293T packaging cell line. The virus-containing supernatant is further concentrated using an inhouse concentrator solution, titrated, and applied to mouse T cells purified via a convenient and rapid method by nylon-wool columns. Using the method presented here, we were able to achieve high titer γ-retrovirus and highly pure mouse T cells with desirable CAR transduction efficiency. The mouse CAR T cells produced through this protocol demonstrate favorable CAR expression and viability, thus making them suitable for further in vitro/in vivo assays. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Production of γ-retroviral vectors from retrovirus-backbone plasmids Basic Protocol 2: Concentration of γ-retrovirus-containing supernatants Basic Protocol 3: Titration of concentrated γ-retrovirus Basic Protocol 4: Isolation and activation of mouse T cells Basic Protocol 5: Transduction of activated mouse T cells, assessment of CAR expression, and expansion of CAR T cells for further in vitro/in vivo studies Support Protocol: Surface staining of cells for flow cytometric assessment of CAR expression.


Sujet(s)
Récepteurs chimériques pour l'antigène , Lymphocytes T , Animaux , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/génétique , Récepteurs chimériques pour l'antigène/métabolisme , Souris , Humains , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Cellules HEK293 , Immunothérapie adoptive/méthodes , Modèles animaux de maladie humaine , Retroviridae/génétique , Tumeurs/immunologie , Tumeurs/thérapie , Vecteurs génétiques
13.
Oncoimmunology ; 13(1): 2392897, 2024.
Article de Anglais | MEDLINE | ID: mdl-39206095

RÉSUMÉ

Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown remarkable results in melanoma, but only modest clinical benefits in other cancers, even after TIL have been genetically modified to improve their tumor homing, cytotoxic potential or overcome cell exhaustion. The required ex vivo TIL expansion process may induce changes in the T cell clonal composition, which could likely compromise the tumor reactivity of TIL preparations and ultimately the success of TIL therapy. A promising approach based on the production of bispecific T cell-engagers (TCE) by engineered T cells (STAb-T therapy) improves the efficacy of current T cell redirection strategies against tumor-associated antigens in hematological tumors. We studied the TCRß repertoire in non-small cell lung cancer (NSCLC) tumors and in ex vivo expanded TIL from two unrelated patients. We generated TIL secreting anti-epidermal growth factor receptor (EGFR) × anti-CD3 TCE (TILSTAb) and tested their antitumor efficacy in vitro and in vivo using a NSCLC patient-derived xenograft (PDX) model in which tumor fragments and TIL from the same patient were transplanted into hIL-2 NOG mice. We confirmed that the standard TIL expansion protocol promotes the loss of tumor-dominant T cell clones and the overgrowth of virus-reactive TCR clonotypes that were marginally detectable in primary tumors. We demonstrated the antitumor activity of TILSTAb both in vitro and in vivo when administered intratumorally and systemically in an autologous immune-humanized PDX EGFR+ NSCLC mouse model, where tumor regression was mediated by TCE-redirected CD4+ TIL bearing non-tumor dominant clonotypes.


Sujet(s)
Lymphocytes T CD4+ , Carcinome pulmonaire non à petites cellules , Immunothérapie adoptive , Tumeurs du poumon , Lymphocytes TIL , Tests d'activité antitumorale sur modèle de xénogreffe , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/thérapie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Animaux , Humains , Lymphocytes TIL/immunologie , Tumeurs du poumon/immunologie , Tumeurs du poumon/thérapie , Tumeurs du poumon/anatomopathologie , Souris , Immunothérapie adoptive/méthodes , Lymphocytes T CD4+/immunologie , Récepteurs ErbB/métabolisme , Récepteurs ErbB/immunologie , Femelle , Anticorps bispécifiques , Souris SCID
14.
Cell Mol Life Sci ; 81(1): 378, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39215816

RÉSUMÉ

Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.


Sujet(s)
Cellules présentatrices d'antigène , Immunothérapie adoptive , Humains , Cellules présentatrices d'antigène/immunologie , Immunothérapie adoptive/méthodes , Animaux , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Tumeurs/immunologie , Tumeurs/thérapie , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/métabolisme , Récepteurs chimériques pour l'antigène/génétique , Récepteurs aux antigènes des cellules T/immunologie , Récepteurs aux antigènes des cellules T/métabolisme
15.
J Immunother Cancer ; 12(8)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39111832

RÉSUMÉ

BACKGROUND: Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS: We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS: In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS: This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.


Sujet(s)
Glioblastome , Récepteur EphA3 , Glioblastome/thérapie , Glioblastome/immunologie , Humains , Animaux , Souris , Tumeurs du cerveau/immunologie , Tumeurs du cerveau/thérapie , Tests d'activité antitumorale sur modèle de xénogreffe , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/métabolisme , Immunothérapie adoptive/méthodes , Lymphocytes T/immunologie , Lignée cellulaire tumorale
16.
Cancer Innov ; 3(1): e95, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38948536

RÉSUMÉ

Background: Since RNA sequencing has shown that induced pluripotent stem cells (iPSCs) share a common antigen profile with tumor cells, cancer vaccines that focus on iPSCs have made promising progress in recent years. Previously, we showed that iPSCs derived from leukemic cells of patients with primary T cell acute lymphoblastic leukemia (T-ALL) have a gene expression profile similar to that of T-ALL cell lines. Methods: Mice with T-ALL were treated with dendritic and T (DC-T) cells loaded with intact and complete antigens from T-ALL-derived iPSCs (T-ALL-iPSCs). We evaluated the safety and antitumor efficiency of autologous tumor-derived iPSC antigens by flow cytometry, cytokine release assay, acute toxicity experiments, long-term toxicity experiments, and other methods. Results: Our results indicate that complete tumor antigens from T-ALL-iPSCs could inhibit the growth of inoculated tumors in immunocompromised mice without causing acute and long-term toxicity. Conclusion: T-ALL-iPSC-based treatment is safe and can be used as a potential strategy for leukemia immunotherapy.

17.
J Immunother Cancer ; 12(7)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38955421

RÉSUMÉ

BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.


Sujet(s)
Antigènes CD19 , Immunothérapie adoptive , Interleukine-15 , Animaux , Souris , Antigènes CD19/immunologie , Immunothérapie adoptive/méthodes , Humains , Modèles animaux de maladie humaine , Lignée cellulaire tumorale , Femelle , Sous-unité alpha du récepteur à l'interleukine-15 , Récepteurs chimériques pour l'antigène/immunologie , Lymphomes/thérapie , Lymphomes/immunologie , Souris de lignée BALB C , Lymphocytes T/immunologie , Lymphocytes T/transplantation
18.
J Immunother Cancer ; 12(7)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39032940

RÉSUMÉ

BACKGROUND: Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS: We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS: Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS: NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.


Sujet(s)
Mémoire immunologique , Cellules tueuses naturelles , Humains , Cellules tueuses naturelles/immunologie , Cellules tueuses naturelles/métabolisme , Tumeurs/immunologie , Tumeurs/thérapie , Protéomique/méthodes , Cytokines/métabolisme , Lignée cellulaire tumorale , Immunothérapie/méthodes , Phénotype , Souris
19.
Small Methods ; : e2400633, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39039995

RÉSUMÉ

Lipid nanoparticles encapsulating mRNA (LNP-mRNA) revolutionized medicine over the past several years. While clinically approved indications currently focus on infectious disease vaccination, LNP-mRNA based treatments also hold promise for cancer immunotherapy. However, the route of dosing may impact treatment efficacy, safety, and dose. To minimize adverse effects, it is hypothesized that LNP-mRNA can be used to activate and engineer dendritic cells (DC) ex vivo before re-administration of these cells. Here, it is shown that LNP-mRNA engineered DCs can indeed vaccinate recipient mice. Vaccinated mice showed strong anti-tumor T cell responses, rejected tumor challenge, and displayed no evidence of toxicity. Further, it is found that DC specific ablation of the immune activating kinase NFkB inducing kinase (NIK) abrogated vaccination efficacy, demonstrating that adoptively transferred DCs can be functionally modified in addition to their antigen presentation capacity. Collectively, these studies show that ex vivo LNP-mRNA engineering of DCs is a feasible and robust therapeutic strategy for cancer.

20.
J Immunother Cancer ; 12(7)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39029925

RÉSUMÉ

BACKGROUND: Natural killer (NK) cell therapy is considered an attractive and safe strategy for anticancer therapy. Nevertheless, when autologous or allogenic NK cells are used alone, the clinical benefit has been disappointing. This is partially due to the lack of target specificity. Recently, CD19-specific chimeric antigen receptor (CAR)-NK cells have proven to be safe and potent in patients with B-cell tumors. However, the generation of CAR-NK cells is a complicated manufacturing process. We aim at developing a targeted NK cell therapy without the need for cellular genetic modifications. We took advantage of the natural expression of the IgG Fc receptor CD16a (FcγRIIIa) to induce strong antigen-specific effector functions through antibody-dependent cell-mediated cytotoxicity (ADCC). We have generated the new technology "Pin", which enables the arming of modified monoclonal antibodies (mAbs) onto the CD16a of ex vivo expanded NK (eNK) cells. Methods Ex vivo eNK were prepared from umbilical cord blood cells and expanded using interleukin (IL)-2/IL-15 and Epstein-Barr virus (EBV)-transformed B-lymphoblastoid feeder cells. mAbs were engineered with four substitutions called Pin mutations to increase their affinity to CD16a. eNK were incubated with anti-CD20 or anti-CD19 Pin-mAbs to generate "armed" eNK and were used to assess effector functions in vitro on cancer cell lines, lymphoma patient cells and in vivo. RESULTS: CD16a/Pin-mAb interaction is stable for several days and Pin-mAb eNK inherit the mAb specificity and exclusively induce ADCC against targets expressing the cognate antigen. Hence, Pin-mAbs confer long-term selectivity to eNK, which allows specific elimination of the target cells in several in vivo mouse models. Finally, we showed that it is possible to arm eNK with at least two Pin-mAbs simultaneously, to increase efficacy against heterogenous cancer cell populations. CONCLUSIONS: The Pin technology provides an off-the-shelf NK cell therapy platform to generate CAR-like NK cells, without genetic modifications, that easily target multiple tumor antigens.


Sujet(s)
Cellules tueuses naturelles , Récepteurs du fragment Fc des IgG , Cellules tueuses naturelles/immunologie , Cellules tueuses naturelles/métabolisme , Humains , Animaux , Souris , Récepteurs du fragment Fc des IgG/métabolisme , Récepteurs du fragment Fc des IgG/immunologie , Immunothérapie adoptive/méthodes , Lignée cellulaire tumorale , Antigènes CD19/immunologie , Cytotoxicité à médiation cellulaire dépendante des anticorps , Récepteurs chimériques pour l'antigène/immunologie , Récepteurs chimériques pour l'antigène/génétique , Récepteurs chimériques pour l'antigène/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe , Anticorps monoclonaux/usage thérapeutique , Anticorps monoclonaux/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE