Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 237
Filtrer
1.
J Biol Chem ; : 107596, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39032652

RÉSUMÉ

Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health beneficial short chain fatty acids, knowledge on details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing produced 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by addition of the A1-I alginate lyase.

2.
Int J Biol Macromol ; 277(Pt 1): 133972, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39029836

RÉSUMÉ

A novel alginate lyase Aly7Aq was cloned and heterologous expressed by a combination of bioinformatics and molecular biology. Aly7Aq was an M-specific alginate lyase, exhibiting optimum reaction conditions at 50 °C and pH 10.0. Aly7Aq was determined to degrade polysaccharides in a random endo-acting manner. The minimum reaction substrate was tetrasaccharide, and Aly7Aq mainly attacked the third glycosidic linkage from the reducing end of oligosaccharide substrates. The disaccharide product of Aly7Aq was ΔM and the trisaccharide products were ΔMM and ΔMG, which differed from all previously characterized M-specific alginate lyases. The degradation products demonstrated that the ±2 subsites of Aly7Aq strictly recognized M units, while the -1 subsite accommodated both M and G units. Therefore, the substrate specificity of Aly7Aq was derived from the specificity of ±2 subsites. This is the first report on the specificity at subsite ±2 of M-specific alginate lyase. The novel M-specific Aly7Aq could serve as a potential tool in the specific degradation of alginate and targeted preparation of oligosaccharide.

3.
Enzyme Microb Technol ; 180: 110486, 2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39038418

RÉSUMÉ

Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.

4.
Int J Biol Macromol ; 273(Pt 2): 132685, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38823749

RÉSUMÉ

To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.


Sujet(s)
Stabilité enzymatique , Simulation de dynamique moléculaire , Polysaccharide-lyases , Polysaccharide-lyases/composition chimique , Polysaccharide-lyases/génétique , Polysaccharide-lyases/métabolisme , Cinétique , Température , Ingénierie des protéines/méthodes , Mutation , Substitution d'acide aminé , Mutagenèse dirigée
5.
Int J Mol Sci ; 25(11)2024 May 26.
Article de Anglais | MEDLINE | ID: mdl-38891987

RÉSUMÉ

Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.


Sujet(s)
Alginates , Stabilité enzymatique , Polysaccharide-lyases , Vibrio , Polysaccharide-lyases/métabolisme , Polysaccharide-lyases/génétique , Polysaccharide-lyases/composition chimique , Vibrio/enzymologie , Vibrio/génétique , Alginates/métabolisme , Alginates/composition chimique , Liaison aux protéines , Domaine catalytique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Solubilité , Séquence d'acides aminés , Température , Protéines recombinantes/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique
6.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article de Anglais | MEDLINE | ID: mdl-38708178

RÉSUMÉ

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Sujet(s)
Antibactériens , Biofilms , Chitosane , Liposomes , Nanoparticules , Infections à Pseudomonas , Pseudomonas aeruginosa , Biofilms/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/physiologie , Humains , Infections à Pseudomonas/traitement médicamenteux , Nanoparticules/composition chimique , Chitosane/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/pharmacocinétique , Vecteurs de médicaments/composition chimique , Mucoviscidose/traitement médicamenteux , Mucoviscidose/microbiologie , Lipides/composition chimique , Lipides/pharmacologie , Détection du quorum/effets des médicaments et des substances chimiques , Cellules A549 , Alginates/composition chimique
7.
Mar Drugs ; 22(5)2024 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-38786594

RÉSUMÉ

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Sujet(s)
Phaeophyceae , Polyosides , Algue marine , Algue marine/métabolisme , Phaeophyceae/métabolisme , Polyosides/métabolisme , Hydrolyse , Biomasse , Glucanes/métabolisme , Flavobacteriaceae/métabolisme , Varech/métabolisme
8.
Mar Drugs ; 22(5)2024 May 18.
Article de Anglais | MEDLINE | ID: mdl-38786621

RÉSUMÉ

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Sujet(s)
Escherichia coli , Polysaccharide-lyases , Triholosides , Vibrio , Polysaccharide-lyases/métabolisme , Triholosides/biosynthèse , Vibrio/enzymologie , Spécificité du substrat , Alginates , Zea mays , Oligosaccharides
9.
Int J Biol Macromol ; 269(Pt 1): 132084, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38719003

RÉSUMÉ

Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.


Sujet(s)
Alginates , Antibactériens , Biofilms , Polysaccharide-lyases , Pseudomonas aeruginosa , Biofilms/effets des médicaments et des substances chimiques , Biofilms/croissance et développement , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Alginates/composition chimique , Alginates/pharmacologie , Polysaccharide-lyases/composition chimique , Polysaccharide-lyases/métabolisme , Antibactériens/pharmacologie , Antibactériens/composition chimique , Stabilité enzymatique , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Température , Acide glucuronique/composition chimique , Acide glucuronique/pharmacologie , Modèles moléculaires
10.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38705960

RÉSUMÉ

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Sujet(s)
Antibactériens , Biofilms , Paenibacillus , Polysaccharide-lyases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/enzymologie , Pseudomonas aeruginosa/génétique , Biofilms/effets des médicaments et des substances chimiques , Biofilms/croissance et développement , Polysaccharide-lyases/métabolisme , Polysaccharide-lyases/génétique , Antibactériens/pharmacologie , Paenibacillus/génétique , Paenibacillus/enzymologie , Paenibacillus/effets des médicaments et des substances chimiques , Gentamicine/pharmacologie , Amikacine/pharmacologie , Fermentation , Tests de sensibilité microbienne , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Alginates/métabolisme
11.
Genes (Basel) ; 15(5)2024 05 08.
Article de Anglais | MEDLINE | ID: mdl-38790228

RÉSUMÉ

Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed.


Sujet(s)
Alginates , Varech , Métagénomique , Polysaccharide-lyases , Polysaccharide-lyases/génétique , Polysaccharide-lyases/métabolisme , Polysaccharide-lyases/composition chimique , Métagénomique/méthodes , Varech/génétique , Alginates/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Escherichia coli/génétique , Spécificité du substrat , Chloroflexi/génétique , Chloroflexi/enzymologie
12.
Mar Biotechnol (NY) ; 26(3): 488-499, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38668917

RÉSUMÉ

Polysaccharide-degrading bacteria are key participants in the global carbon cycle and algal biomass recycling. Herein, a polysaccharide lyase-producing strain HB226069 was isolated from Sargassum sp. from Qingge Port, Hainan, China. Results of the phylogenetic of the 16S rRNA gene and genotypic analysis indicated that the isolate should be classified as Microbulbifer thermotolerans. The whole genome is a 4,021,337 bp circular chromosome with a G+C content of 56.5%. Analysis of the predicted genes indicated that strain HB226069 encoded 161 carbohydrate-active enzymes (CAZymes), and abundant putative enzymes involved in polysaccharide degradation were predicted, including alginate lyase, fucosidase, agarase, xylanase, cellulase, pectate lyase, amylase, and chitinase. Three of the putative polysaccharide lyases from PL7 and PL17 families were involved in alginate degradation. The alginate lyases of strain HB226069 showed the maximum activity of 117.4 U/mL at 50 °C, pH 7.0, and 0.05 M FeCl3, while exhibiting the best stability at 30 °C and pH 7.0. The Thin Layer Chromatography (TLC) and Electrospray Ionization Mass Spectrometry (ESI-MS) analyses indicated that the alginate oligosaccharides (AOSs) degraded by the partially purified alginate lyases contained oligosaccharides of DP2-DP5 and monosaccharide while reacting for 36 h. The complete genome of M. thermotolerans HB226069 enriches our understanding of the mechanism of polysaccharide lyase production and supports its potential application in polysaccharide degradation.


Sujet(s)
Génome bactérien , Phylogenèse , Polysaccharide-lyases , Polysaccharide-lyases/génétique , Polysaccharide-lyases/métabolisme , ARN ribosomique 16S/génétique , Chine , Sargassum/microbiologie , Sargassum/métabolisme , Alginates/métabolisme , Polyosides/métabolisme , Composition en bases nucléiques , Bacteroidetes/génétique , Bacteroidetes/enzymologie , Bacteroidetes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme
13.
Int J Biol Macromol ; 270(Pt 1): 131917, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38679252

RÉSUMÉ

Enzymatic degradation of alginate for the preparation of alginate oligosaccharides (AOS) is currently receiving significant attention in the field. AOS has been shown to promote crop growth and improve plant resistance to abiotic stresses. In this study, two PL6 family alginate lyases, AlyRmA and AlyRmB, were expressed and characterized. These enzymes demonstrate exceptional activity and stable thermophilicity compared to other known alginate lyases. AlyRmA (8855.34 U/mg) and AlyRmB (7879.44 U/mg) exhibited excellent degradation activity towards sodium alginate even at high temperatures (70 °C). The AlyRmA and AlyRmB were characterized and utilized to efficiently produce AOS. The study investigated the promotional effect of AOS on the growth of Brassica napus L. seedlings in a saline-alkaline environment. The results of this study demonstrate the high activity and thermal stability of AlyRmA and AlyRmB, highlighting their potential in the preparation of AOS. Moreover, the application of AOS prepared by AlyRmB could enhance the resistance of Brassica napus L. to saline-alkali environments, thereby broadening the potential applications of AOS.


Sujet(s)
Alginates , Brassica napus , Oligosaccharides , Polysaccharide-lyases , Brassica napus/enzymologie , Alginates/composition chimique , Oligosaccharides/composition chimique , Oligosaccharides/pharmacologie , Polysaccharide-lyases/métabolisme , Polysaccharide-lyases/composition chimique , Alcalis/composition chimique , Stabilité enzymatique/effets des médicaments et des substances chimiques , Température , Concentration en ions d'hydrogène , Salinité , Plant/effets des médicaments et des substances chimiques , Plant/croissance et développement , Plant/métabolisme
14.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38563787

RÉSUMÉ

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Sujet(s)
Alginates , Microbiome gastro-intestinal , Oligosaccharides , Alginates/métabolisme , Oligosaccharides/métabolisme , Souris , Animaux , Humains , Colite/microbiologie , Colite/induit chimiquement , Souris de lignée C57BL , Acides gras volatils/métabolisme , Inflammation/métabolisme , Sulfate dextran , Fibre alimentaire/métabolisme
15.
Carbohydr Polym ; 333: 121929, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38494211

RÉSUMÉ

Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/µmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/µmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.


Sujet(s)
Diholoside , Oligosaccharides , Spécificité du substrat , Oligosaccharides/métabolisme , Diholoside/métabolisme , Polysaccharide-lyases/métabolisme , Alginates/métabolisme , Concentration en ions d'hydrogène , Protéines bactériennes/composition chimique
16.
Mar Drugs ; 22(3)2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38535461

RÉSUMÉ

Alginate lyase (AL) is a polysaccharide-degrading enzyme that can degrade alginate by hydrolyzing glycosidic bonds and produces unsaturated alginate oligosaccharides (AOSs). These AOSs have wide therapeutic and nutraceutical applications. However, to produce alginate oligosaccharides in a cost-effective manner is challenging due to the low availability and high cost of this degrading enzyme. Immobilization of the enzyme facilitates industrial applications owing to its stability, reusability, and cost-effectiveness. This study was focused on the enhancement of the properties of alginate lyase and improvement of the production of AOS. Alginate lyase was immobilized on magnetic nanoparticles (NPs) using glutaraldehyde as the crosslinker. The study showed that the maximum binding achieved between NPs and protein in the enzyme was 71% at a ratio of 1:150 NP:protein. As a result of immobilization, the optimum activity of free enzyme which was obtained at 37 °C and pH 7.4 changed to 45 °C and pH 9. Furthermore, the enzyme was thermostable at 45 °C for 3 h with up to 50% reusability for six consecutive cycles. Storage stability after 15 days showed ~67% relative hydrolysis of alginate. The free alginate lyase (25 IU) showed 76% raw biomass (seaweed) hydrolysis which is higher compared to 63% provided by the immobilized enzyme. As a result of efficient hydrolysis, AOSs with molecular weight profile of 370-1040 kDa were produced and detected using HPLC.


Sujet(s)
Alginates , Polysaccharide-lyases , Oligosaccharides , Biomasse
17.
Article de Anglais | MEDLINE | ID: mdl-38401040

RÉSUMÉ

Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.

18.
J Cyst Fibros ; 2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38402083

RÉSUMÉ

BACKGROUND: Biofilm-associated pulmonary infections pose therapeutic challenges in cystic fibrosis patients, especially when involving multiple bacterial species. Enzymatic degradation of the biofilm matrix may offer a potential solution to enhance antibiotic efficacy. This study investigated the repurposing of DNase I, commonly used for its mucolytic activity in cystic fibrosis, to target extracellular DNA within biofilms, as well as potential synergies with alginate lyase and broad-spectrum antibiotics in dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. METHODS: Dual-species biofilms were grown in artificial sputum medium using S. aureus and P. aeruginosa isolated by pairs from the same patients and exposed to various combinations of enzymes, meropenem, or tobramycin. Activity was assessed by measuring biofilm biomass and viable counts. Matrix degradation and decrease in bacterial load were visualized using confocal microscopy. Biofilm viscoelasticity was estimated by rheology. RESULTS: Nearly complete destruction of the biofilms was achieved only if combining the enzymatic cocktail with the two antibiotics, and if using supratherapeutic levels of DNase I and high concentrations of alginate lyase. Biofilms containing non-pigmented mucoid P. aeruginosa required higher antibiotic concentrations, despite low viscoelasticity. In contrast, for biofilms with pigmented mucoid P. aeruginosa, a correlation was observed between the efficacy of different treatments and the reduction they caused in elasticity and viscosity of the biofilm. CONCLUSIONS: In this complex, highly drug-tolerant biofilm model, enzymes prove useful adjuvants to enhance antibiotic activity. However, the necessity for high enzyme concentrations emphasizes the need for thorough concentration-response evaluations and safety assessments before considering clinical applications.

19.
Enzyme Microb Technol ; 175: 110408, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38309052

RÉSUMÉ

Alginate lyases with unique characteristics for degrading alginate into size-defined oligosaccharide fractions, were considered as the potential agents for disrupting Pseudomonas aeruginosa biofilms. In our study, a novel endolytic PL-7 alginate lyase, named AlyG2, was cloned and expressed through Escherichia coli. This enzyme exhibited excellent properties: it maintained more than 85% activity at low temperatures of 4 °C and high temperatures of 70 °C. After 1 h of incubation at 4 °C, it still retained over 95% activity, demonstrating the ability to withstand low temperature. The acid-base and salt tolerance properties shown it preserves more than 50% activity in the pH range of 5.0 to 11.0 and in a high salt environment at 3000 mM NacCl, indicating its high stability in several aspects. More importantly, AlyG2 in our research was revealed to be effective at removing mature biofilms and inhibiting biofilm formation produced by Pseudomonas aeruginosa, and the inhibition and disruption rates were 47.25 ± 4.52% and 26.5 ± 6.72%, respectively. Additionally, the enzyme AlyG2 promoted biofilm disruption in combination with antibiotics, particularly manifesting the synergistic effect with erythromycin (FIC=0.5). In all, these results offered that AlyG2 with unique characteristics may be an effective technique for the clearance or disruption of biofilm produced by P. aeruginosa.


Sujet(s)
Biofilms , Flavobacteriaceae , Pseudomonas aeruginosa , Pseudomonas aeruginosa/génétique , Polysaccharide-lyases/génétique , Polysaccharide-lyases/composition chimique , Alginates
20.
J Agric Food Chem ; 72(8): 4116-4126, 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38372665

RÉSUMÉ

Alginate lyase Aly448, a potential new member of the polysaccharide lyase (PL) 7 family, which was cloned and identified from the macroalgae-associated bacterial metagenomic library, showed bifunctionality. The molecular docking results revealed that Aly448 has two completely different binding sites for alginate (polyMG), poly-α-l-guluronic acid (polyG), and poly-ß-d-mannuronic acid (polyM) substrates, respectively, which might be the molecular basis for the enzyme's bifunctionality. Truncational results confirmed that predicted key residues affected the bifunctionality of Aly448, but did not wholly explain. Besides, Aly448 presented excellent biochemical characteristics, such as higher thermal stability and pH tolerance. Degradation of polyMG, polyM, and polyG substrates by Aly448 produced tetrasaccharide (DP4), disaccharide (DP2), and galactose (DP1), which exhibited excellent antioxidant activity. These findings provide novel insights into the substrate recognition mechanism of bifunctional alginate lyases and pave a new path for the exploitation of natural antioxidant agents.


Sujet(s)
Antioxydants , Protéines bactériennes , Protéines bactériennes/métabolisme , Simulation de docking moléculaire , Polysaccharide-lyases/composition chimique , Alginates/composition chimique , Spécificité du substrat , Concentration en ions d'hydrogène
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE