Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 11.583
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-38982696

RÉSUMÉ

Lymphoma is a malignant tumor caused by abnormal proliferation of lymphocytes in the lymphatic system. Conventional treatments for lymphoma often have limitations, and new therapeutic strategies need to be explored. Realgar is an ancient Chinese medicine that has been used for centuries to treat a variety of ailments due to its therapeutic potential for various diseases, including cancer. However, it is a time-consuming waste and has a low absorption rate in the gastrointestinal tract, so it has the disadvantages of oral dose, potential toxicity, and low bioavailability. Recently, the development of nanotechnology has promoted the nanization of realgar particles, which have better physicochemical properties and higher bioavailability. The antitumor activity of Realgar nanoparticles against lymphoma has been demonstrated in preclinical studies. Realgar nanoparticles exhibit cytotoxic effects by inducing apoptosis and inhibiting the growth and proliferation of lymphoma cells. Moreover, these nanoparticles exert immunomodulatory effects by enhancing the activity of immune cells and promoting the cytotoxicity of T lymphocytes against lymphoma cells. Additionally, realgar nanoparticles have been shown to inhibit tumor angiogenesis, thereby restricting the blood supply and nutrient availability to lymphoma cells. Despite promising preclinical data, further research on the role and mechanism of realgar nanoparticles in the treatment of lymphoma remains to be studied. Moreover, the translation of these findings into clinical practice requires rigorous evaluation through well-designed clinical trials. Realgar nanoparticles hold great potential as a novel therapeutic approach for lymphoma, and their development may contribute to the advancement of precision medicine in the field of oncology.

2.
Cancer Biol Med ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982978

RÉSUMÉ

Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.

3.
Cell Commun Signal ; 22(1): 352, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970078

RÉSUMÉ

BACKGROUND: In triple-negative breast cancer (TNBC) therapy, insufficient tumor infiltration by lymphocytes significantly hinders the efficacy of immune checkpoint inhibitors. We have previously demonstrated that Hainanenin-1 (HN-1), a host defense peptide (HDP) identified from Hainan frog skin, induces breast cancer apoptosis and boots anti-tumor immunity via unknown mechanism. METHODS: We used in vitro experiments to observe immunogenic cell death (ICD) indicators in HN-1-treated TNBC cell lines, a mouse tumor model to verify HN-1 promotion of mice anti-tumor immune response, and an in vitro drug sensitivity test of patient-derived breast cancer cells to verify the inhibitory effect of HN-1. RESULTS: HN-1 induced ICD in TNBC in a process during which damage-associated molecular patterns (DAMPs) were released that could further increase the anti-tumor immune response. The secretion level of interleukin 2 (IL-2), IL-12, and interferon γ in the co-culture supernatant was increased, and dendritic cells (DCs) were activated via a co-culture with HN-1-pretreated TNBC cells. As a result, HN-1 increased the infiltration of anti-tumor immune cells (DCs and T lymphocytes) in the mouse model bearing both 4T1 and EMT6 tumors. Meanwhile, regulatory T cells and myeloid-derived suppressor cells were suppressed. In addition, HN-1 induced DNA damage, and double-strand DNA release in the cytosol was significantly enhanced, indicating that HN-1 might stimulate ICD via activation of STING pathway. The knockdown of STING inhibited HN-1-induced ICD. Of note, HN-1 exhibited inhibitory effects on patient-derived breast cancer cells under three-dimensional culture conditions. CONCLUSIONS: Collectively, our study demonstrated that HN-1 could be utilized as a potential compound that might augment immunotherapy effects in patients with TNBC.


Sujet(s)
Mort cellulaire immunogène , Protéines membranaires , Tumeurs du sein triple-négatives , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/immunologie , Animaux , Humains , Mort cellulaire immunogène/effets des médicaments et des substances chimiques , Femelle , Souris , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Lignée cellulaire tumorale , Souris de lignée BALB C , Cellules dendritiques/immunologie , Cellules dendritiques/effets des médicaments et des substances chimiques , Cellules dendritiques/métabolisme
4.
Eur J Med Chem ; 276: 116646, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38972080

RÉSUMÉ

Cycloicaritin (CICT), a bioactive flavonoid derived from the genus Epimedium, exhibits a variety of beneficial biological activities, including promising anticancer effects. However, its poor oral bioavailability is attributed to its extremely low aqueous solubility and rapid elimination via phase II conjugative metabolism. To overcome these limitations, we designed and synthesized a series of carbamate-bridged prodrugs, protecting the hydroxyl group at the 3-position of cycloicaritin by binding with the N-terminus of a natural amino acid. The optimal prodrug 4b demonstrated a significant increase in aqueous solubility as compared to CICT, as well as improved stability in phase II metabolism, while allowing for a rapid release of CICT in the blood upon gastrointestinal absorption. The prodrug 4b also facilitated oral absorption through organic anion-transporting polypeptide 2B1-mediated transport and exhibited moderate cytotoxicity. Importantly, the prodrug enhanced the oral bioavailability of CICT and displayed dose-dependent antitumor activity with superior safety. In summary, the prodrug 4b is a novel potential antitumor drug candidate, and the carbamate-bridged amino acid prodrug approach is a promising strategy for the oral delivery of CICT.

5.
ACS Nano ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38975713

RÉSUMÉ

Tumor in situ vaccination (ISV) strategies have emerged in clinical trials as promising approaches, involving the release of tumor antigens through local radiotherapy and intratumorally adjuvant injections. However, the current fabrication strategy for achieving a sustainable immune response to ISV remains a pressing challenge. In this study, we present an empowered sustainable ISV method for antitumor therapy using 177Lu-labeled manganese-doped mesoporous hydroxyapatite (177Lu/Mn-HAP) microspheres. The ISV enables the sustained utilization of tumor antigens, leading to the activation of dendritic cells and polarization of macrophages toward the M1 subtype. Consequently, it facilitates the generation of potent CD8+ T-cell responses, enhancing the antitumor effects of internal radiation in both primary and distant tumors. Importantly, this approach achieves complete remission in all tumor-bearing mice and stimulates immune memory to prevent tumor recurrence. Our study highlights a universal and safe ISV strategy capable of inducing potent tumor-specific and sustainable immune response.

6.
Pharm Dev Technol ; : 1-12, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38973737

RÉSUMÉ

In order to overcome the poor bioavailability of paclitaxel (PTX), in this study, self-assembled paclitaxel silk fibronectin nanoparticles (PTX-SF-NPs) were encapsulated with outer membrane vesicles of Escherichia coli (E. coil), and biofilm-encapsulated paclitaxel silk fibronectin nanoparticles (OMV-PTX-SF-NPs) were prepared by high-pressure co-extrusion, the size and zeta potential of the OMV-PTX-SF-NPs were measured. The antitumor effects of OMV-PTX-SF-NPs were evaluated by cellular and pharmacodynamic assays, and pharmacokinetic experiments were performed. The results showed that hydrophobic forces and hydrogen bonding played a major role in the interaction between paclitaxel and filipin proteins, and the size of OMV-PTX-SF-NPs was 199.8 ± 2.8 nm, zeta potential was -17.8 ± 1.3 mv. The cellular and in vivo pharmacokinetic assays demonstrated that the OMV-PTX-SF-NPs possessed a promising antitumor effect. Pharmacokinetic experiments showed that the AUC0-∞ of OMV-PTX-SF-NPs was 5.314 ± 0.77, which was much larger than that of free PTX, which was 0.744 ± 0.14. Overall, we have successfully constructed a stable oral formulation of paclitaxel with a sustained-release effect, which is able to effectively increase the bioavailability of paclitaxel, improve the antitumor activity, and reduce the adverse effects.

7.
Biomed Pharmacother ; 177: 117057, 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38976957

RÉSUMÉ

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.

8.
Oncol Lett ; 28(2): 400, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38979554

RÉSUMÉ

α-solanine is a glycoalkaloid that is commonly found in nightshades (Solanum) and has a toxic effect on the human organism. Among other things, it is already known to inhibit tumor cell proliferation and induce apoptosis in tumor cell lines. Due to its potential as a tumor therapeutic, the current study investigated the effect of α-solanine on head and neck squamous cell carcinoma (HNSCC). In addition, genotoxic and antiangiogenic effects on human umbilical vein endothelial cells (HUVECs) were evaluated at subtoxic α-solanine concentrations. Cytotoxicity and apoptosis rates were measured in two human HNSCC cell lines (FaDu pharynx carcinoma cells and CAL-33 tongue carcinoma cells), as well as in HUVECs. MTT and Annexin V analyses were performed 24 h after α-solanine treatment at increasing doses up to 30 µM to determine cytotoxic concentrations. Furthermore, genotoxicity at subtoxic concentrations of 1, 2, 4 and 6 µM in HUVECs was analyzed using single-cell gel electrophoresis (comet assay). The antiangiogenic effect on HUVECs was evaluated in the capillary tube formation assay. The MTT assay indicated an induction of concentration-dependent viability loss in FaDu and CAL-33 cancer cell lines, whereas the Annexin V test revealed α-solanine-induced cell death predominantly independent from apoptosis. In HUVECs, the cytotoxic effect occurred at lower concentrations. No genotoxicity or inhibition of angiogenesis were detected at subtoxic doses in HUVECs. In summary, α-solanine had a cytotoxic effect on both malignant and non-malignant cells, but this was only observed at higher concentrations in malignant cells. In contrast to existing data in the literature, tumor cell apoptosis was less evident than necrosis. The lack of genotoxicity and antiangiogenic effects in the subtoxic range in benign cells are promising, as this is favorable for potential therapeutic applications. In conclusion, however, the cytotoxicity in non-malignant cells remains a severe hindrance for the application of α-solanine as a therapeutic tumor agent in humans.

9.
Adv Sci (Weinh) ; : e2400695, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38981064

RÉSUMÉ

Tumor immune evasion relies on the crosstalk between tumor cells and adaptive/innate immune cells. Immune checkpoints play critical roles in the crosstalk, and immune checkpoint inhibitors have achieved promising clinical effects. The long non-coding RNA taurine-upregulated gene 1 (TUG1) is upregulated in hepatocellular carcinoma (HCC). However, how TUG1 is upregulated and the effects on tumor immune evasion are incompletely understood. Here, METTL3-mediated m6A modification led to TUG1 upregulation is demonstrated. Knockdown of TUG1 inhibited tumor growth and metastasis, increased the infiltration of CD8+ T cells and M1-like macrophages in tumors, promoted the activation of CD8+ T cells through PD-L1, and improved the phagocytosis of macrophages through CD47. Mechanistically, TUG1 regulated PD-L1 and CD47 expressions by acting as a sponge of miR-141 and miR-340, respectively. Meanwhile, TUG1 interacted with YBX1 to facilitate the upregulation of PD-L1 and CD47 transcriptionally, which ultimately regulated tumor immune evasion. Clinically, TUG1 positively correlated with PD-L1 and CD47 in HCC tissues. Moreover, the combination of Tug1-siRNA therapy with a Pdl1 antibody effectively suppressed tumor growth. Therefore, the mechanism of TUG1 in regulating tumor immune evasion is revealed and can inform existing strategies targeting TUG1 for enhancing HCC immune therapy and drug development.

10.
Int J Hyperthermia ; 41(1): 2373319, 2024.
Article de Anglais | MEDLINE | ID: mdl-38955354

RÉSUMÉ

BACKGROUND: Cryoablation (Cryo) is a minimally invasive treatment for tumors. Cryo can activate the body's immune response, although it is typically weak. The immune response induced by Cryo in hepatocellular carcinoma (HCC) is poorly understood. PD-1 and CTLA-4 monoclonal antibodies are immune checkpoint inhibitors used in immunotherapy for tumors. The combined use of these antibodies with Cryo may enhance the immune effect. METHODS: A Balb/c mouse model of HCC was established and treated with Cryo, immune checkpoint blockade (ICB), or Cryo + ICB (combination therapy). The growth trend of right untreated tumors and survival time of mice were determined. The expression of apoptosis-related proteins was detected by Western blot (WB) assay. The percentages of immune cells and immunosuppressive cells were analyzed by flow cytometry. The numbers of infiltrating T lymphocytes were checked by immunohistochemistry, and the levels of T-cell-associated cytokines were detected by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) assays and Enzyme-Linked Immunosorbent Assays (ELISA) assays. RESULTS: Cryo + ICB inhibited the growth of right untreated tumors, promoted tumor cell apoptosis, and prolonged the survival time of mice. Local T-cell infiltration in right tumor tissues increased after the combination therapy, while the number of immunosuppressive cells was significantly reduced. In addition, the combination therapy may induce the production of multiple Th1-type cytokines but reduce the production of Th2-type cytokines. CONCLUSIONS: Cryo can activate CD8+ and CD4+ T-cell immune responses. Cryo + ICB can relieve the immunosuppressive tumor microenvironment and shift the Th1/Th2 balance toward Th1 dominance, further enhancing the Cryo-induced T-cell immune response and resulting in a stronger antitumor immune response.


Sujet(s)
Carcinome hépatocellulaire , Cryochirurgie , Inhibiteurs de points de contrôle immunitaires , Tumeurs du foie , Souris de lignée BALB C , Animaux , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/thérapie , Carcinome hépatocellulaire/immunologie , Carcinome hépatocellulaire/anatomopathologie , Souris , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/immunologie , Tumeurs du foie/thérapie , Cryochirurgie/méthodes , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Modèles animaux de maladie humaine , Lignée cellulaire tumorale
11.
Metallomics ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955388

RÉSUMÉ

Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline (HL-2) as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate (IR) was 63.0% (p <0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.

12.
EMBO Rep ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956225

RÉSUMÉ

Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.

13.
Animal Model Exp Med ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38957072

RÉSUMÉ

This review compiles information from the literature on the chemical composition, pharmacological effects, and molecular mechanisms of earthworm extract (EE) and suggests possibilities for clinical translation of EE. We also consider future trends and concerns in this domain. We summarize the bioactive components of EE, including G-90, lysenin, lumbrokinase, antimicrobial peptides, earthworm serine protease (ESP), and polyphenols, and detail the antitumor, antithrombotic, antiviral, antibacterial, anti-inflammatory, analgesic, antioxidant, wound-healing, antifibrotic, and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies. We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies, and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance. The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis. Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix. The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage. Earthworms have evolved a well-developed defense mechanism to fight against microbial infections, and the bioactive agents in EE have shown good antibacterial, fungal, and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections, effectively reducing pain. Recent studies have also highlighted the role of EE in lowering blood glucose. EE shows high medicinal value and is expected to be a source of many bioactive compounds.

14.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958633

RÉSUMÉ

Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.

15.
Article de Anglais | MEDLINE | ID: mdl-38946103

RÉSUMÉ

In this research, a novel MgSiO3 fiber membrane (MSFM) loaded with indocyanine green (ICG) and doxorubicin (DOX) was prepared. Because of MgSiO3's unique lamellar structure composed of a silicon-oxygen tetrahedron, magnesium ion (Mg2+) moves easily and can be further replaced with other cations. Therefore, because of the positively charged functional group of ICG, MSFM has a rather high drug loading for ICG. In addition, there is electrostatic attraction between DOX (a cationic drug) and ICG (an anionic drug). Hence, after loading ICG, more DOX can be adsorbed into MSFM because of electrostatic interaction. The ICG endows the MSFM outstanding photothermal therapy (PTT) performance, and DOX as a chemotherapeutic drug can restrain tumor growth. On the one hand, H+ exchanged with the positively charged DOX based on the MgSiO3 special lamellar structure. On the other hand, the thermal effect could break the electrostatic interaction between ICG and DOX. Based on the above two points, both tumor acidic microenvironment and photothermal effect can trigger DOX release. What's more, in vitro and in vivo antiosteosarcoma therapy evaluations displayed a superior synergetic PTT-chemotherapy anticancer treatment and excellent biocompatibility of DOX&ICG-MSFM. Finally, the MSFM was proven to greatly promote cell proliferation, differentiation, and bone regeneration performance in vitro and in vivo. Therefore, MSFM provides a creative perspective in the design of multifunctional scaffolds and shows promising applications in controlled drug delivery, antitumor performance, and osteogenesis.

16.
J Cancer ; 15(13): 4345-4359, 2024.
Article de Anglais | MEDLINE | ID: mdl-38947402

RÉSUMÉ

Background: Tumor hypoxia has been frequently detected in nasopharyngeal carcinoma (NPC) and is intently associated with therapeutic resistance. The aim of the study is to establish a clonogenically stable hypoxia-inducible dual reporter model and apply it to investigate the effect of tumor hypoxia on DNA double strand break (DSB) and synergistic effect of irradiation in combination with chemotherapy or targeted therapy. Methods: The plasmid vector consisting of hypoxia response elements to regulate HSV1-TK and GFP genes, was constructed and stably transfected into human NPC cells. The expected clone was identified and validated by in vivo and in vitro assay. DSB repair was measured by γH2AX foci formation. Tumor growth delay assay and spatial biodistribution of various biomarkers was designed to investigate the anti-tumor effect. Results: The system has the propensity of high expression of reporter genes under hypoxia and low to no expression under normoxia. Intratumoral biodistributions of GFP and classic hypoxic biomarkers were identical in poor-perfused region. Upon equilibration with 10% O2, the xenografts showed higher expression of hypoxic biomarkers. Cisplatin radiosensitized SUNE-1/HRE cells under hypoxia by suppressing DSB repair while the addition of PI3K/mTOR inhibitor further enhanced the anti-tumoral therapeutic efficacy. Combination of IR, DDP and NVP-BEZ235 exhibited most effective anti-tumor response in vivo. These observations underline the importance of dual reporter model for imaging tumor hypoxia in therapeutic study. Conclusions: Our preclinical model enables the investigation of heterogeneous tumor hypoxic regions in xenograft tissues and explores the treatment efficacy of combinations of various therapeutic approaches to overcome hypoxia.

17.
J Family Med Prim Care ; 13(5): 1628-1635, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38948582

RÉSUMÉ

Cancer chemotherapy remains an area of concern, as many of the therapies are uncomfortable involving side effects and unpleasant experiences. These factors could further reduce patient's quality of life, and even endanger their life. Many therapeutic strategies have been tried to reduce the unpleasant side effects and increase the treatment effectiveness; however, none have shown to have promising effects. One of the main hindrances to cancer therapy is the escape strategies by tumor cells to the immune attack. Promoting inflammation in the tumor microenvironment is the cornerstone and key therapeutic target in cancer chemotherapy. High-salt diet (HSD) intake, though it has deleterious effects on human health by promoting chronic inflammation, is found to be advantageous in the tumor microenvironment. Studies identified HSD favors an increased abundance of Bifidobacterium species in the tumor environment due to gut barrier alteration, which, in turn, promotes inflammation and favors improved response to cancer chemotherapy. A review of the literature was carried out to find out the effects of an HSD on health and diseases, with special mention of its effect on cancer chemotherapy. Studies emphasized HSD would block the myeloid-derived suppressor cells which will enhance the tumor immunity. Exploration of the precise mechanism of simple HSD regime/ingestion of specific bacterial species as probiotics will be effective and essential to formulate the game-changing cancer chemotherapy. With the modern era of healthcare moving toward precision medicine where the physician can choose the treatment option suitable for the individual, HSD regime/ingestion of specific bacterial species can be considered.

18.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 339-344, 2024 Apr 14.
Article de Chinois | MEDLINE | ID: mdl-38951060

RÉSUMÉ

Objective: Exploring the efficacy and safety of bridging blinatumomab (BiTE) in combination with chimeric antigen receptor T (CAR-T) cell therapy for the treatment of adult patients with acute B-cell lymphoblastic leukemia (B-ALL) . Methods: Clinical data from 36 adult B-ALL patients treated at the First Affiliated Hospital of Suzhou University from August 2018 to May 2023 were retrospectively analyzed. A total of 36 cases were included: 18 men and 18 women. The median age was 43.5 years (21-72 years). Moreover, 21 cases of Philadelphia chromosome-positive acute lymphoblastic leukemia were reported, and 16 of these cases were relapsed or refractory. Eighteen patients underwent blinatumomab bridging followed by CAR-T cell therapy, and 18 patients received CAR-T cell therapy. This study analyzed the efficacy and safety of treatment in two groups of patients. Results: In the BiTE bridge-to-CAR-T group, 16 patients achieved complete remission (CR) after BiTE immunotherapy, with a CR rate of 88.9%. One month after bridging CAR-T therapy, bone marrow examination showed a CR rate of 100.0%, and the minimal residual disease (MRD) negativity rate was higher than the nonbridging therapy group (94.4% vs. 61.1%, Fisher, P=0.041). The incidence of cytokine release syndrome and other adverse reactions in the BiTE bridge-to-CAR-T group was lower than that in the nonbridging therapy group (11.1% vs. 50.0%, Fisher, P=0.027). The follow-up reveals that 13 patients continued to maintain MRD negativity, and five patients experienced relapse 8.40 months (2.57-10.20 months) after treatment. Two of five patients with relapse achieved CR after receiving the second CAR-T cell therapy. In the nonbridging therapy group, 10 patients maintained continuous MRD negativity, 7 experienced relapse, and 6 died. The 1 year overall survival rate in the BiTE bridge-to-CAR-T group was higher than that in the nonbridging therapy group, with a statistically significant difference at the 0.1 level (88.9%±10.5% vs. 66.7%±10.9%, P=0.091) . Conclusion: BiTE bridging CAR-T cell therapy demonstrates excellent efficacy in adult B-ALL treatment, with a low recent recurrence rate and ongoing assessment of long-term efficacy during follow-up.


Sujet(s)
Anticorps bispécifiques , Immunothérapie adoptive , Humains , Mâle , Adulte , Femelle , Anticorps bispécifiques/administration et posologie , Adulte d'âge moyen , Immunothérapie adoptive/méthodes , Immunothérapie adoptive/effets indésirables , Études rétrospectives , Jeune adulte , Sujet âgé , Résultat thérapeutique , Leucémie-lymphome lymphoblastique à précurseurs B/thérapie , Leucémie-lymphome lymphoblastique à précurseurs B et T/thérapie
19.
Mol Divers ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951417

RÉSUMÉ

Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.

20.
Biomed Pharmacother ; 177: 116974, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38968798

RÉSUMÉ

Over the past decade, immunotherapies have brought about significant changes in how we approach the treatment of various solid tumors and blood-related cancers. However, the effectiveness of checkpoint blockade therapy has been constrained to a rate of under 30 %. A significant challenge in the realm of tumor immunotherapy revolves around comprehending the mechanisms through which regulatory T (Treg) cells induce immunosuppression. We have recently discovered that USP22 (ubiquitin-specific peptidase 22) a deubiquitinating enzyme that is increased in various tumors, is an oncogene and controls Treg immune suppressive activity for tumor evasion, providing a rationale for USP22 targeting to achieve both onco- and immuno-therapeutic efficacies. Herein, we identified the traditional Chinese secoiridoid compound gentiopicroside as a USP22 inhibitor. Gentiopicroside treatment decreased the forkhead box P3 (Foxp3) expression, which subsequently reduced Treg immune suppressive activity. Treatment of cancer cells by gentiopicroside resulted in an increase in histone 2B monoubiquitination (H2Bub) in a USP22-dependent manner and a decrease in programmed cell death ligand 1 (PD-L1) expression, both of which are known as USP22-specific substrates. Docking and molecular dynamic simulation revealed that gentiopicroside stably binds to USP22 catalytic pocket, supporting that gentiopicroside is a USP22 inhibitor. Importantly, administration of gentiopicroside to mice significantly inhibited the growth of syngenetic lung adenocarcinoma. Further analysis of intratumoral immune cells revealed a dramatic increase CD8+ T cell production of IFN-γ and granzyme B (GZMB), confirming that gentiopicroside enhances antitumor immunity. Our study revealed that gentiopicroside is a USP22-specific inhibitor with potent antitumor therapeutic potentials.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...