Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nanotechnology ; 35(36)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38848693

RÉSUMÉ

Aqueous aluminum-ion batteries have many advantages such as their safety, environmental friendliness, low cost, high reserves and the high theoretical specific capacity of aluminum. So aqueous aluminum-ion batteries are potential substitute for lithium-ion batteries. In this paper, the current research status and development trends of cathode and anode materials and electrolytes for aqueous aluminum-ion batteries are described. Aiming at the problem of passivation, corrosion and hydrogen evolution reaction of aluminum anode and dissolution and irreversible change of cathode after cycling in aqueous aluminum-ion batteries. Solutions of different research routes such as ASEI (artificial solid electrolyte interphase), alloying, amorphization, elemental doping, electrolyte regulation, etc and different transformation mechanisms of anode and cathode materials during cycling have been summarized. Moreover, it looks forward to the possible research directions of aqueous aluminum-ion batteries in the future. We hope that this review can provide some insights and support for the design of more suitable electrode materials and electrolytes for aqueous aluminum-ion batteries.

2.
Angew Chem Int Ed Engl ; 63(26): e202405592, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38647330

RÉSUMÉ

In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

3.
Nanomaterials (Basel) ; 14(5)2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38470801

RÉSUMÉ

Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO2) as a potential anode material for AIBs in water. The annealed N-TiO2 showed a high discharge capacity of 43.2 mAh g-1 at a current density of 3 A g-1. Analysis of the electrode kinetics revealed that the N-TiO2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.

4.
Nano Lett ; 23(24): 11842-11849, 2023 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-38071640

RÉSUMÉ

Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.

5.
Small ; 18(43): e2107773, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35934834

RÉSUMÉ

The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety. Extensive efforts are devoted to developing AAIBs in the last few years. Yet, it is still challenging to achieve stable electrodes with good electrochemical performance and electrolytes without side reactions. This review summarizes the recent progress in the exploration of anode and cathode materials and the selection of electrolytes of AAIBs. Lastly, the main challenges and future research outlook of high-performance AAIBs are also presented.

6.
Small ; 18(22): e2200463, 2022 Jun.
Article de Anglais | MEDLINE | ID: mdl-35523734

RÉSUMÉ

Aqueous aluminum ion batteries are rarely constructed due to the unworkable Al metal and the preferential H2 evolution. Herein, organic anode with H2 -inhibition is optimized through tuning the polymerization degree and displays a high-rate and reversible storage of Al ions based on an enolation between Al ions and the carbonyl double bonds on the conjugated structures. The superiority of the optimal sample is researched, which is attributed to the raised state of lowest unoccupied molecule orbital (LUMO) with the doner N-N bridge and relatively small steric hindrance of the dimmer. When paired with active carbon, a high cycling life of 5000 cycles with a retention of 99.2% is obtained. A full battery constructed by this dimer and δ-MnO2 cathode delivers an average voltage of 1.0 V, high capacity of 263.8 mAh g-1 based on the mass of δ-MnO2 , and high-capacity retention of 88.8% after cycling for 300 cycles. More importantly, with a fully eliminated corrosion and passivation in AlCl3 and Al2 (SO4 )3 electrolytes, a long calendar stability of 104 days is achieved.

7.
Angew Chem Int Ed Engl ; 60(11): 5794-5799, 2021 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-33314518

RÉSUMÉ

Aqueous aluminum-ion batteries (AABs) are regarded as promising next-generation energy storage devices, and the current reported cathodes for AABs mainly focused on inorganic materials which usually implement a typical Al3+ ions (de)insertion mechanism. However, the strong electrostatic forces between Al3+ and the host materials usually lead to sluggish kinetics, poor reversibility and inferior cycling stability. Herein, we employ an organic compound with redox-active moieties, phenazine (PZ), as the cathode material in AABs. Different from conventional inorganic materials confined by limited lattice spacing and rigid structure, the flexible organic molecules allow a large-size Al-complex co-intercalation through reversible redox active centers (-C=N-) of PZ. This co-intercalation behavior can effectively reduce desolvation penalty, and substantially lower the Coulombic repulsion during the ion (de)insertion process. Consequently, this organic cathode exhibits a high capacity and excellent cyclability, which exceeds those of most reported electrode materials for AABs. This work highlights the anion co-intercalation chemistry of redox-active organic materials, which is expected to boost the development of high-performance multivalent-ion battery systems.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE