Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 391
Filtrer
1.
Environ Pollut ; 360: 124662, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39097261

RÉSUMÉ

Cooking process for food significantly impacts household air and increases exposure to endocrine disruptors such as acrylamide, consequently affecting human health. In the past 30 years, the transformation of cooking methods to high-temperature thermal processing has occurred widely in China. Yet the transition of cooking methods on the onset of type 2 diabetes (T2D) remains unclear, which may hinder health-based Sustainable Development Goals. We aimed to estimate the associations between dietary intake with different cooking methods and T2D risk. We included 14,745 participants (>20 y) from the China Health and Nutrition Survey (1991-2015). Food consumption was calculated using three consecutive 24-h dietary recalls combined with both individual participant level and household food inventory. Cooking methods, including boiling, steaming, baking, griddling, stir-frying, deep-frying, and raw eating, were also recorded. The consumption of baked/griddled and deep-fried foods was positively associated with 39% and 35% higher of T2D risk by comparing the highest with the lowest category of food consumption, respectively. The use of unhealthy cooking methods for processing foods including baked/griddled and deep-fried foods was attributable for 15 million T2D cases of the total T2D burden in 2011, resulting in a medical cost of $2.7 billion and was expected to be attributable for 39 million T2D cases in 2030, producing a medical cost of $223.8 billion. Replacing one serving of deep-fried foods and baked/griddle foods with boiled/steamed foods was related to 50% and 20% lower risk of T2D, respectively. Our findings recommend healthy driven cooking methods for daily diet for nourishing sustainable T2D prevention in China.

2.
Foods ; 13(16)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39200409

RÉSUMÉ

Rye grain is a good source of dietary fiber, phenolic compounds, vitamins, and mineral compounds. To prevent the staling process of bread, semi-finished bakery products are subjected to cooling or freezing, and this process is called the postponed baking method. The aim of this study was to examine the influence of rye arabinoxylans differing in molar mass on the properties of rye bread baked using the postponed baking method. The breads were baked from rye flour types 720 and 1150, without and with a 1% share of unmodified or cross-linked rye arabinoxylans (AXs). The molar mass of the unmodified AXs was 432,160 g/mol, while that of the AXs after cross-linking was 1,158,980 g/mol. The results of this study show that the 1% share of AXs significantly increased the water addition to both types of rye flour and dough yield, and this increase was proportional to the molar mass of the AXs used. It is shown that a 1% share of both AX preparations positively increased the volume and crumb moisture of bread baked by the postponed baking method. Cross-linked AXs proved to be particularly effective in increasing the volume and bread crumb moisture. Both AX preparations had a positive effect on reducing the bread crumb hardness of rye breads baked by the postponed baking method.

3.
J Food Sci ; 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39164807

RÉSUMÉ

Baking is a healthier alternative to frying, since texture, color, smell, and flavor are developed, without adding oil. The objective was to estimate the moisture content in potato slices, during baking using Fick's law of diffusion to model internal moisture transport and to assess the impact on quality attributes. Moisture transport kinetics were examined at three baking temperatures of 120, 130, and 140°C. Fick's law was employed to estimate average moisture content using different methods: considering both a constant (method of slopes by subperiods, MSS; and method of successive approximations, MSA) and a variable (represented as a quadratic function of time, QFT) behavior of effective diffusivity (De). Three quality variables were analyzed: water activity (aw, dew point hygrometry), total color difference (∆E, colorimetry), and fracturability (F, universal testing machine). The diffusivity estimated with the time-varying De method provided a more realistic description of moisture migration during baking. The aw, ∆E, and F for baked potato slices ranged from 0.234 to 0.276, 17.9 to 24.6, and 5.20 to 5.49 N, respectively. These attributes imply improved stability and extended shelf life, showing typical colors and texture changes for baked snacks. These changes are linked to variations in diffusivity, influenced by the size and quantity of micropores within the food structure. This study could allow an accurate prediction of mass transfer by considering variable De, facilitating the optimization of baking conditions. PRACTICAL APPLICATION: The analysis of the moisture content using Fick's law, considering a time-varying diffusivity, enables the optimization of the baking process for foods. This helps minimize the occurrence of defective products.

4.
Environ Sci Pollut Res Int ; 31(34): 46949-46964, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38977553

RÉSUMÉ

Bread production is a pivotal component of global nutrition. However, its extensive production imposes significant strain on resources and energy, resulting in substantial environmental consequences. This study focuses on a multidimensional assessment of the environmental sustainability of the bread life cycle as a case study in Iran. By integrating four life cycle assessment (LCA) methods, this research demonstrates a comprehensive analysis of environmental effects, energy consumption, and exergy demand in bread production. It also identifies the hotspot stages and inputs within the bread production chain. Eventually, it proposes strategies for mitigating the environmental impacts in line with sustainable development goals. Data collection involved questionnaires by face-to-face interviews. The LCA evaluation was conducted using SimaPro software. Sustainability analysis was assessed using four different methods: CML, ReCiPe, cumulative energy demand (CED), and cumulative exergy demand (CExD) method, from cradle to bakery gate. The CML method results indicate that the highest environmental impacts are associated with marine aquatic ecotoxicity (157.04 to 193.36 kg 1,4-DB eq), fossil fuel depletion (11.05 to 12.73 MJ), eutrophication (4.20 × 10-3 to 4.70 × 10-3 kg PO4-3 eq), acidification (8.09 × 10-3 to 9.16 × 10-3 kg SO2 eq), and global warming (0.61 to 0.69 kg CO2 eq). The ReCiPe method highlights wheat production stages and gas consumption as the most significant contributors to damage in terms of human health, ecosystems, and resource consumption indicators. The CED method reveals that fossil energy accounts for over 97% of the energy consumed during the bread life cycle. Energy consumption per kilogram of bread ranges from 12.07 to 13.93 MJ. The CExD method for producing 1 kg of traditional bread falls between 32.25 and 35.88 MJ. More than 60% of this value is attributed to renewable resources of water used in irrigation during the wheat farming stage, while over 35% is linked to non-renewable fossil resources, primarily due to the consumption of natural gas in bakery operations. To assess the potential decrease in environmental emissions, a sensitivity analysis was performed, considering the effects of substituting natural gas with biogas and grid electricity with photovoltaic electricity in the bakery. Then, three improved scenarios were developed, each demonstrating effective reductions in environmental impacts, with the most remarkable decreases observed in marine aquatic ecotoxicity (55%) and fossil fuel depletion (44%). Overall, the findings demonstrate that Sangak bread production exhibits a more environmentally friendly profile than other types of bread. These results can guide decision-makers in the bread production industry towards implementing sustainable practices that prioritize resource efficiency and environmental conservation. Also, stakeholders can develop strategies to reduce the environmental impacts and work towards a more sustainable future.


Sujet(s)
Pain , Environnement , Iran , Développement durable , Conservation des ressources naturelles
5.
Nanomaterials (Basel) ; 14(13)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38998747

RÉSUMÉ

Baked pretzels are a popular choice for a quick snack, easily identifiable by their classic twisted shape, glossy exterior, and small salt crystals sprinkled on top, making them a standout snack. However, it is not commonly known that compounds with fluorescent properties can be formed during their production. Carbon nanodots (CNDs) with an average size of 3.5 nm were isolated and identified in bakery products. This study delved into the formation of CNDs in pretzel production using a fractional factorial experimental design. The research revealed that the baking temperature had the most significant impact on the concentration of CNDs, followed by the concentration of NaOH in the immersion solution, and then the baking time. This study highlights the unique role of the NaOH immersion step, which is not typically present in bread-making processes, in facilitating the formation of CNDs. This discovery highlights the strong correlation between the formation of CNDs and the heat treatment process. Monitoring and controlling these factors is crucial for regulating the concentration of CNDs in pretzel production and understanding nanoparticle formation in processed foods for food safety.

6.
Food Res Int ; 188: 114525, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38823888

RÉSUMÉ

As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.


Sujet(s)
Odorisants , Thé , Composés organiques volatils , Odorisants/analyse , Thé/composition chimique , Composés organiques volatils/analyse , Feuilles de plante/composition chimique , Manipulation des aliments/méthodes , Cuisine (activité)/méthodes , Camellia sinensis/composition chimique , Chromatographie gazeuse-spectrométrie de masse , Température élevée
7.
Sci Rep ; 14(1): 14717, 2024 06 26.
Article de Anglais | MEDLINE | ID: mdl-38926546

RÉSUMÉ

Choosing appropriate tillage methods and applying the right amount of chemical fertilizers are pivotal for optimizing wheat management and enhancing wheat quality. This study investigated the influence of conservation agriculture and phosphorus levels on nutrient content, yield components, and quality traits of wheat in a corn-wheat rotation. Conducted over five years in field conditions, the study employed a randomized complete block design with tillage treatments (conventional tillage, CT; minimum tillage, MT; and no tillage, NT) and phosphorus levels (no fertilizer use, P0; and 100% fertilizer recommendation, PR) as factors. Soil samples were collected during the fourth year (2021-2022). Results revealed significant impacts of tillage methods and phosphorus levels on wheat straw and grain nutrient composition, yield components, and quality traits. Conventional tillage yielded the highest values for protein content (12%), Zeleny sedimentation volume (20.33 mL), hardness index (45), water absorption (64.12%), and wet gluten content (25.83%). Additionally, phosphorus fertilizer application positively influenced protein percentage, gluten weight, and gluten index. The study highlights the potential of strategic soil management, particularly conventional tillage combined with phosphorus fertilization, to enhance wheat quality and yield. By elucidating these relationships, the findings contribute to optimizing wheat cultivation practices and advancing the development of superior wheat cultivars for baking applications.


Sujet(s)
Engrais , Phosphore , Triticum , Zea mays , Triticum/croissance et développement , Phosphore/analyse , Engrais/analyse , Zea mays/croissance et développement , Grains comestibles/croissance et développement , Sol/composition chimique , Agriculture/méthodes , Production végétale/méthodes
8.
Foods ; 13(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38890940

RÉSUMÉ

Glycoalkaloids (TGAs, total glycoalkaloids), toxic secondary metabolites, are found in potatoes (110-335 mg·kg-1 DW), mainly in the peel. Colorful, unpeeled potatoes are an innovative raw material for the production of snacks which are poorly tested in terms of their glycoalkaloid content. Third-generation snacks and French fries made from red-fleshed Mulberry Beauty (MB) and purple-fleshed Double Fun (DF) potatoes were produced with the use of 1% solutions of ascorbic, citric, lactic, malic, and tartaric acids to stabilize the structure of anthocyanins in the raw material and maintain their color in obtained products. The influence of the type of acid and thermal processes, like frying, microwaving, and baking, on the content of glycoalkaloids in ready-made products was examined. Only 0.45-1.26 mg·100 g-1 of TGA was found in pellet snacks and 1.32-1.71 mg·100 g-1 in French fries. Soaking blanched potatoes in organic acid solution reduced the α-chaconine content by 91-97% in snacks and by 57-93% in French fries in relation to the raw material to the greatest extent after the use of malic acid and the DF variety. The effect of lactic and citric acid was also beneficial, especially in the production of baked French fries from MB potatoes.

9.
Food Sci Nutr ; 12(5): 3417-3432, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38726457

RÉSUMÉ

Injera is a type of flatbread that is fermented, naturally leavened, and native to Ethiopia. However, injera quality can vary depending on the processing steps used, even if the same variety of teff is used. This research was conducted to optimize the prebaking processing and baking conditions to produce better quality teff injera suitable for industrial and export purposes. Four experiments were conducted to optimize the injera-making process. The first two phases focused on optimizing the prebaking processing conditions (fermentation temperature and time, absit mixing ratio, absit cooking time, and secondary fermentation time). The best physicochemical qualities were obtained at a primary fermentation temperature of 25°C for 64 h, an 8% mixing ratio of absit with 10 min of cooking, and a secondary fermentation time of 4 h. In the third phase, baking temperature (195 ± 5, 215 ± 5, 235 ± 5, and 255 ± 5°C) and time (1, 2, and 3 min) were evaluated. The results showed that the best response variables were obtained at a temperature of 255 ± 5°C for 2 min or 235 ± 5°C for 3 min. Finally, the optimized conditions were validated on five different varieties [DZ-Cr-387, DZ-Cr-2124, white (T-BT), white (T-GK), and sergegna teff (T-E)] of teff grain. The results indicated that the optimized conditions could produce better quality and consistent teff injera on a large commercial scale, which would suit both local and export markets.

10.
Food Chem ; 451: 139471, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38692241

RÉSUMÉ

To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.


Sujet(s)
Biodisponibilité , Ostreidae , Zinc , Humains , Cellules Caco-2 , Animaux , Zinc/métabolisme , Zinc/composition chimique , Ostreidae/composition chimique , Ostreidae/métabolisme , Cuisine (activité) , Protéines de transport/composition chimique , Protéines de transport/métabolisme , Température élevée , Liaison aux protéines , Fruits de mer/analyse
11.
J Food Sci ; 89(6): 3230-3247, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38767858

RÉSUMÉ

The effects of the storage process on the quality characteristics of a hemp-enriched "tsoureki" (a rich-dough baked Greek product, rich-dough baked product [RDBP]) were investigated. The wheat flour was substituted with defatted hemp flour at selected ratios (0%-50% hemp:wheat flour). The baked products were stored at 25°C and at specific time intervals (0, 1, 4, 7, 10, and 14 days), and their properties were determined, including moisture content, water activity, structure, texture, color, total phenolic content (TPC), and antioxidant activity. Moreover, analyses of phenolic compounds were performed using quadrupole time of flight liquid chromatography-mass spectroscopy, identifying 14 compounds. Both the first-order kinetic model and modified Avrami equation, including the hemp-to-wheat ratio effect in the rate constant, well described the changes in the quality characteristics. The results showed that storage time and hemp incorporation significantly affected the quality of the product. Water activity decreased from 0.901 to 0.859, whereas moisture content decreased from 30.52%-32.33% (0 days) to 26.97%-27.02% w.b. (14 days) with storage time for all hemp additions. Hardness was greatly affected by hemp flour addition and approached 14.72 and 17.85 N after 14 days of storage for 30% and 50% substitutions, respectively. Springiness and cohesiveness decreased with hemp addition and storage time. The color difference of the hemp-enriched products compared to the control sample increased during storage. TPC increased due to the addition of hemp flour, whereas 14 compounds were identified. Based on property correlation, the hemp-enriched RDBP-tsoureki held its high-quality characteristics for 7 days of storage and contained a significant amount of bioactive compounds. PRACTICAL APPLICATION: Industrially produced, defatted hemp is a promising byproduct that can be used to nutritionally enhance baked goods. Modeling results can be used for the prediction of the properties that define product storage ability and also that the hemp-enriched, rich dough-baked Greek "tsoureki" could be produced while maintaining total phenolic content and antioxidant activity during 7 days of storage. These findings are expected to be used in the future in baked goods industry applications to produce goods with an improved nutritional profile.


Sujet(s)
Antioxydants , Cannabis , Farine , Stockage des aliments , Phénols , Cannabis/composition chimique , Stockage des aliments/méthodes , Farine/analyse , Antioxydants/analyse , Phénols/analyse , Triticum/composition chimique , Grèce , Cuisine (activité)/méthodes , Eau/analyse , Couleur
12.
J Food Sci ; 89(7): 4331-4344, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38783574

RÉSUMÉ

Color and shape are important quality attributes in baked goods, particularly cookies. Composition and processing conditions determine and influence color development and morphological changes in these baked goods. The objective of this study was to systematically evaluate the evolution of color and shape during baking to determine useful correlations that can be implemented during the assessment and modeling of the baking process. Cookies (AACC-I standard protocol 10-53.01) were baked at 185, 205, and 225°C. Moisture content, water activity, surface temperature, characteristic dimensions (radius and thickness), and color indexes (lightness, redness, blueness, and browning index [BI]) were monitored at different locations on the cookie surface and baking times. Relationships among the tested conditions were explored using correlation analysis. The cookies' dimensions and color indexes were strongly correlated with changes in moisture content over time, and those relationships were characterized using empirical models. The temperature dependence of the kinetic parameters of the changes in lightness and BI was also described and deemed independent of the location on the cookie surface. This study provides insights into the influence of heat and mass transfer on the physical and physicochemical changes of cookies during baking. The kinetic and secondary models developed in this study can serve as important components for establishing a comprehensive approach for coupling heat transfer, mass transfer, and reaction kinetics to estimate and optimize cookie-baking processes. PRACTICAL APPLICATION: The findings from this study provide valuable information for better understanding the morphological changes and color developments during the cookie-baking process. The quantitative data and models generated in this study will allow identifying baking conditions for better quality development.


Sujet(s)
Couleur , Cuisine (activité) , Température élevée , Cuisine (activité)/méthodes , Cinétique , Eau , Réaction de Maillard
13.
Heliyon ; 10(10): e31234, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38803924

RÉSUMÉ

Intercropping is an alternative farming method that maximizes crop yield and resource usage effectiveness, especially in low-input agricultural systems. Legume-based intercropping systems can effectively boost the quality and wheat yield by promoting soil functions and microbial activities. However, changes in the types of legumes and field management can alter the response of crop functions. A three-year field study was conducted on intercropping cultivation of winter wheat variety (Butterfly and Lorien) and legume species (faba bean, incarnate clover, spring pea, winter pea) to assess grain yield and wheat quality in organic farming. Based on the results, Butterfly showed higher grain quality but lower grain yield and yield components than Lorien. Mixtures of legume crops with winter wheat did not significantly differ in wheat grain yield, but grain quality variables were significantly affected. Protein content (PC) was significantly higher in wheat and legume mixtures than in sole wheat by 4 %. PC in wheat + winter pea (Wheat + Wi) and wheat + faba bean (Wheat + Fa) were higher than wheat sown alone. Wet gluten (WG) was higher in Wheat + Wi than in sole wheat and wheat + incarnate clover mixtures (Wheat + In). The rheological parameters evaluated by the Mixolab showed greater wheat quality in Butterfly and legume mixtures. Mixed and row-row intercropping of wheat and legume species did not significantly influence rheological properties. To conclude, customizing wheat yield and grain quality under the effect of winter wheat and legume mixtures requires considering the optimal solution based on different cultivates, wheat varieties and legume species to achieve the desired response.

14.
J Food Prot ; 87(6): 100280, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38642807

RÉSUMÉ

A validation study was conducted to investigate the effect of the English muffin baking process to control Salmonella contamination and to study the thermal inactivation kinetic parameters (D- and z-values) of Salmonella in English muffin dough. The unbleached bread flour was inoculated with 3 serovar Salmonella cocktail (Salmonella serovars viz., Newport, Typhimurium, and Senftenberg), and dried back to its preinoculated water activity levels with 7.46 ± 0.12 log CFU/g of Salmonella concentration. The Salmonella inoculated flour was used to prepare English muffin batter and baked at 204.4°C (400°F) for 18 min and allowed to cool at ambient air for 15 min. The English muffins reached 99 ± 0°C (211.96 ± 0.37°F) as their maximum mean internal temperature during baking. The pH and aw of English muffin dough were 5.01 ± 0.01 and 0.947 ± 0.003, respectively. At the end of the 18-min baking period, the Salmonella inoculated English muffins recorded a more than 5 log CFU/g reduction on the injury-recovery media. The D-values of 3 serovar cocktails of Salmonella at 55, 58.5, and 62°C were 42.0 ± 5.68, 15.6 ± 0.73, and 3.0 ± 0.32 min, respectively; and the z-value was 6.2 ± 0.59°C. The water activity (aw) of the English muffin crumb (0.947 ± 0.003 to 0.9557 ± 0.001) remained statistically unchanged during baking, whereas the aw of the muffin crust decreased significantly (0.947 ± 0.003 to 0.918 ± 0.002) by the end of 18 min of baking. This study validates and documents the first scientific evidence that baking English muffins at 204.4°C (400°F) for 18 min acts as an effective kill step by controlling Salmonella population by >5 log CFU/g.


Sujet(s)
Numération de colonies microbiennes , Contamination des aliments , Microbiologie alimentaire , Salmonella , Contamination des aliments/prévention et contrôle , Contamination des aliments/analyse , Pain/microbiologie , Humains , Manipulation des aliments/méthodes , Cuisine (activité) , Farine/microbiologie , Cinétique
15.
Int J Biol Macromol ; 268(Pt 2): 131681, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38643913

RÉSUMÉ

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.


Sujet(s)
Pain , Hordeum , Masse moléculaire , Protéines végétales , Amidon , Triticum , bêta-Glucanes , bêta-Glucanes/composition chimique , Pain/analyse , Digestion , Hordeum/composition chimique , Protéines végétales/composition chimique , Amidon/composition chimique , Triticum/composition chimique , Eau/composition chimique
16.
Prev Nutr Food Sci ; 29(1): 47-62, 2024 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-38576886

RÉSUMÉ

Here we test a method of incorporating of plant extracts into popular snack foods to help control diabetes. Since some fresh vegetables contain antidiabetic compounds, ultrasound-assisted extraction was used to optimize their extraction of from spring onions, bunching onions, and celery for later incorporation into crackers. We compared various concentrations of ethanol used during extraction, after which they were exposed to an ultrasound processor whose amplitude and sonication time were also varied. The optimal extraction conditions were found to be an ethanol concentration of 44.08%, an amplitude of 80%, and a sonication time of 30 min. This resulted in the highest level of α-glucosidase inhibitory activity (i.e., 1,449.73 mmol ACE/g) and the highest extraction yield (i.e., 24.16%). The extract produced from these optimum conditions was then used as a constituent component of crackers at 0.625%, 1.25%, or 2.5% w/w. These biscuits were then produced at baking temperatures of 140°C, 150°C, or 160°C. We then measured the physical characteristics and bioactivities of sample biscuits from each treatment. We found that biscuits containing 2.5% vegetable combination extract and baked at 140°C had the highest total phenolic content, the strongest antioxidant performance, and showed the most substantial antidiabetic and antiobesity effects. Here we establish conditions for the effective extraction of antidiabetic functional ingredients via ultrasound from green leafy vegetables. We also provide a method of using these ingredients to prepare crackers with the aim of developing a functional antidiabetic snack food.

17.
Food Chem X ; 22: 101347, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38623503

RÉSUMÉ

Increased prevalence of diabetes prompts the development of foods with reduced starch digestibility. This study analyzed the impact of adding soluble dietary fiber (inulin-IN; polydextrose-PD) to baked gluten-starch matrices (7.5-13%) on microstructure formation and in vitro starch digestibility. IN and PD enhanced water-holding capacity, the hardness of baked matrices, and lowered water activity in the formulated matrices, potentially explaining the reduced starch gelatinization degree as IN or PD concentration increased. A maximum gelatinization decrease (26%) occurred in formulations with 13% IN. Micro-CT analysis showed a reduction in total and open porosity, which, along with the lower gelatinization degree, may account for the reduced in vitro starch digestibility. Samples with 13% IN exhibited a significantly lower rapidly available glucose fraction (8.56 g/100 g) and higher unavailable glucose fraction (87.76 g/100 g) compared to the control (34.85 g/100 g and 47.59 g/100 g, respectively). These findings suggest the potential for developing healthier, starch-rich baked foods with a reduced glycemic impact.

18.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38553986

RÉSUMÉ

Different food processing parameters may alter starch granule structure and its cooking degree. With lower thermomechanical energy, more resistant starch (RS) is retained in the food, which may benefit gastrointestinal (GI) health. The objective of this study was to determine the effect of food processing on dietary utilization and dog gut health. Experimental diets containing 56% corn as the sole starch source were produced through pelleting, baking, and extrusion and compared to a baked control diet in which the corn was replaced with dextrose. The extruded diet resulted in the highest level (P < 0.05) of in vitro starch cook and lowest RS, while baked was intermediate and pelleted had the lowest starch cook and highest RS. To evaluate the in vivo effects of these treatments, 12 dogs were adapted to foods for 9 d, and feces were collected for 5 d in a replicated 4 × 4 Latin square design. Feces were scored for consistency using an ordinal scale, and parametric data included apparent digestibility (ATTD), parameters indicative of gut health, and the microbial composition, which was centered log-ratio transformed before operational taxonomic unit (OTU) analyses. Fecal scores were analyzed by ordinal logistic regression, and parametric data were analyzed as mixed models. Overall ATTD was greater (P < 0.05) in extruded, followed by baked and pelleted. Dogs fed the control had osmotic diarrhea, whereas dogs fed the other treatments had mostly acceptable fecal scores, with extrusion leading to the best fecal quality. The control also led to high fecal pH and low SCFAs, indicating dysbiosis. All corn foods had similar (P > 0.05) fecal SCFAs and extruded tended (P = 0.055) to promote higher fecal butyrate than baked and pelleted. The microbiome of dogs fed the corn foods had similar α diversity indices, and OTUs at the species and phyla levels were mostly alike and different from the control. In conclusion, the higher levels of in vitro RS did not translate into a better in vivo fermentation profile, and extruded kibble performed best regarding fecal quality, ATTD, and fecal SCFAs.


Dog foods were produced via extrusion, baking, and pelleting to yield increasing amounts of starch resistant to digestion (resistant starch [RS]). The foods were compared to a negative dextrose control that contained dextrose in place of starch. Amounts of cooked starch and RS were confirmed by in vitro methodologies. These foods were fed to healthy adult dogs in a Latin square design. Feces were scored for quality and collected to calculate apparent digestibility. Fresh feces were also collected for fecal short-chain fatty acids and microbiome evaluations. The corn-based extruded kibble was more digestible, followed by the baked and pelleted treatments. The extruded treatment produced stools closest to the ideal, but dogs fed the pelleted and baked also produced acceptable feces. The SCFA composition in the feces of dogs fed extruded was like the pelleted treatment, with a higher tendency to produce butyrate. Changes in fermentation were not a consequence of differences in microbiome composition among dogs fed corn-based foods. Dogs fed the control had osmotic diarrhea, with a higher fecal pH and higher proportions of branched-chain fatty acids, which was undesirable. The extruded food performed better overall than baked and pelleted, but they were all acceptable as food forms for dogs.


Sujet(s)
Digestion , Zea mays , Chiens , Animaux , Zea mays/composition chimique , Aliment pour animaux/analyse , Fèces/composition chimique , Régime alimentaire/médecine vétérinaire , Amidon/pharmacologie , Phénomènes physiologiques nutritionnels chez l'animal
19.
Micromachines (Basel) ; 15(3)2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38542555

RÉSUMÉ

Shrink film is a thin sheet of polystyrene plastic that shrinks to 25-40% of its original size when heated. This study investigated the shrinkage factor of the film at different temperatures and baking times to determine the optimal fabrication recipe for shrink film microfluidic device production. Additionally, this study characterized the properties of shrink film, including minimum possible feature size and cross-section geometries, using manual engraving and the CAMEO 4 automated cutting machine. The optimal shrinkage factor ranged from 1.7 to 2.9 at 150 °C and a baking time of 4 min, producing the ideal size for microfluidic device fabrication. The X- and Y-axes shrank ~2.5 times, while Z-axis thickened by a factor of ~5.8 times. This study achieved a minimum feature size of 200 microns, limited by the collapsing of channel sidewalls when shrunk, leading to blockages in the microchannel. These findings demonstrate the feasibility and versatility of using shrink film as a cost-effective and efficient material for the rapid fabrication of microfluidic devices. The potential applications of this material in various fields such as the medical and biomedical industries, bacteria and algae culture and enumeration are noteworthy.

20.
Molecules ; 29(6)2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38542825

RÉSUMÉ

Roasting is an important step in the pretreatment of biomass upgrading. Roasting can improve the fuel quality of biomass, reduce the O/C and H/C ratios in the biomass, and provide the biomass with a fuel quality comparable to that of lignite. Therefore, studying the structure and component evolution laws during biomass roasting treatment is important for the rational and efficient utilization of biomass. When the roasting temperature is 200-300 °C, the cellulose and hemicellulose in the biomass undergo a depolymerization reaction, releasing many monocyclic aromatic hydrocarbons with high reactivity. The proportion of monocyclic aromatic hydrocarbons in biomass roasting products can be effectively regulated by controlling the reaction temperature, residence time, catalyst, baking atmosphere, and other factors in the biomass roasting process. This paper focuses on the dissociation law of organic components in the pretreatment process of biomass roasting.


Sujet(s)
Température élevée , Hydrocarbures aromatiques , Biomasse , Hydrocarbures aromatiques/composition chimique , Température , Cellulose , Hydrocarbures
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE