Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Nano ; 18(10): 7521-7531, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38420965

RÉSUMÉ

Accurately acquiring crucial data on the ambient surroundings and physiological processes delivered via subtle temperature fluctuation is vital for advancing artificial intelligence and personal healthcare techniques but is still challenging. Here, we introduce an electrically induced cation injection mechanism based on thermal-mediated ion migration dynamics in an asymmetrical polymer bilayer (APB) composed of nonionic polymer and polyelectrolyte layers, enabling the development of ultrasensitive flexible temperature sensors. The resulting optimized sensor achieves ultrahigh sensitivity, with a thermal index surpassing 10,000 K-1, which allows identifying temperature differences as small as 10 mK with a sensitivity that exceeds 1.5 mK. The mechanism also enables APB sensors to possess good insensitivity to various mechanical deformations─features essential for practical applications. As a proof of concept, we demonstrate the potential impact of APB sensors in various conceptual applications, such as mental tension evaluation, biomimetic thermal tactile, and thermal radiation detection.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE