Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
1.
Hematol Rep ; 16(3): 440-453, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39051416

RÉSUMÉ

In healthy conditions, blood was considered a sterile environment until the development of new analytical approaches that allowed for the detection of circulating bacterial ribosomal DNA. Currently, debate exists on the origin of the blood microbiota. According to advanced research using dark field microscopy, fluorescent in situ hybridization, flow cytometry, and electron microscopy, so-called microbiota have been detected in the blood. Conversely, others have reported no evidence of a common blood microbiota. Then, it was hypothesized that blood microbiota may derive from distant sites, e.g., the gut or external contamination of blood samples. Alteration of the blood microbiota's equilibrium may lead to dysbiosis and, in certain cases, disease. Cardiovascular, respiratory, hepatic, kidney, neoplastic, and immune diseases have been associated with the presence of Gram-positive and Gram-negative bacteria and/or their products in the blood. For instance, lipopolysaccharides (LPSs) and endotoxins may contribute to tissue damage, fueling chronic inflammation. Blood bacteria can interact with immune cells, especially with monocytes that engulf microorganisms and T lymphocytes via spontaneous binding to their membranes. Moreover, LPSs, extracellular vesicles, and outer membrane vesicles interact with red blood cells and immune cells, reaching distant organs. This review aims to describe the composition of blood microbiota in healthy individuals and those with disease conditions. Furthermore, special emphasis is placed on the interaction of blood microbiota with host cells to better understand disease mechanisms.

2.
Br J Hosp Med (Lond) ; 85(7): 1-16, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39078906

RÉSUMÉ

Aims/Background Adult-onset Still's disease (AOSD) shares similar clinical symptoms with sepsis. Thus, differentiating between AOSD and sepsis presents a great challenge while making diagnosis. This study aimed to analyse the changes in blood microbiota related to AOSD and sepsis using metagenomic next-generation sequencing (mNGS), identify potential biomarkers that distinguish AOSD from sepsis, and explore the diagnostic value of mNGS in differentiation between these two pathological conditions. Methods Clinical data of four AOSD patients and four sepsis patients treated in the Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University between October 2021 and February 2022 were collected. The mNGS diagnostic records of these patients were analysed for microbial correlations in terms of species taxonomic structure and beta diversity by comparing blood microbiota between AOSD and sepsis. The biomarkers with the strongest capability in distinguishing the subgroups were screened using a random forest algorithm. Results There was no statistically significant differences between AOSD patients and sepsis controls in terms of gender and age (p > 0.05). A total of 91 operational taxonomic units (OTUs) were obtained. At the level of phylum, Proteobacteria, Ascomycota and Basidiomycota were present in high abundances in both groups (79.76%, 14.18% and 3.30% vs 54.03%, 32.77% and 5.81%). At the genus level, the abundances of Parainfluenzae, Aspergillus and Ralstonia were the top three highest in the AOSD group (73.88%, 10.92% and 5.48%), while Ralstonia, Aspergillus and Malassezia were ranked as the top three in the sepsis group in term of abundance (48.69%, 27.36% and 5.52%). In beta-diversity analysis, there were advances shown in visual principal coordinates analysis (PCoA) and non-metric multidimensional scaling (NMDS) between the AOSD group and sepsis group (p < 0.05), with little significant differences in the analysis of similarities (Anosim) (p > 0.05). Linear discriminant analysis effect size (LEfSe) showed that Mucoromycota, Saccharomycetes, Moraxellales, Mucorales, Xanthomonadales, Saccharomycetales, Acinetobacter, Stenotrophomonas, Yarrowia, Apophysomyces, Acinetobacter johnson, Yarrowia lipolytica, Apophysomyces variabilis and Stenotrophomonas maltophilia were more enriched in sepsis group (p < 0.05). The top five variables with the strongest capability in distinguishing between AOSD and sepsis were Acinetobacter johnsonii, Apophysomyces variabilis, Propionibacterium acnes, Stenotrophomonas maltophilia and Yarrowia lipolytica. Conclusion The blood microorganisms in AOSD were different from sepsis, and mNGS was potential to distinguish between AOSD and sepsis.


Sujet(s)
Séquençage nucléotidique à haut débit , Métagénomique , Sepsie , Maladie de Still débutant à l'âge adulte , Humains , Sepsie/microbiologie , Sepsie/sang , Sepsie/diagnostic , Mâle , Femelle , Maladie de Still débutant à l'âge adulte/sang , Maladie de Still débutant à l'âge adulte/microbiologie , Maladie de Still débutant à l'âge adulte/diagnostic , Adulte , Adulte d'âge moyen , Métagénomique/méthodes , Microbiote/génétique , Diagnostic différentiel , Marqueurs biologiques/sang
3.
mSystems ; 8(5): e0046723, 2023 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-37698407

RÉSUMÉ

IMPORTANCE: The characteristics of blood microbiota in HIV-infected individuals and their relevance to disease progression are still unknown, despite alterations in gut microbiota diversity and composition in HIV-infected individuals. Here, we present evidence of increased blood microbiota diversity in HIV-infected individuals, which may result from gut microbiota translocation. Also, we identify a group of microbes, Porphyromonas gingivalis, Prevotella sp. CAG:5226, Eubacterium sp. CAG:251, Phascolarctobacterium succinatutens, Anaerobutyricum hallii, Prevotella sp. AM34-19LB, and Phocaeicola plebeius, which are linked to poor immunological recovery. This work provides a scientific foundation toward therapeutic strategies targeting blood microbiota for immune recovery of HIV infection.


Sujet(s)
Syndrome d'immunodéficience acquise , Infections à VIH , Reconstitution immunitaire , Microbiote , Humains , Syndrome d'immunodéficience acquise/complications , Infections à VIH/complications , Inflammation/complications , Prevotella
4.
Nutrients ; 15(14)2023 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-37513685

RÉSUMÉ

Prolonged postprandial hyperlipidemia may cause the development of cardiovascular diseases. This study explored whether postprandial triglyceride-rich lipoprotein (TRL) clearance responsiveness to Platycodi radix beverage (PR) is associated with changes in blood microbiota profiles. We conducted an 8-week randomized controlled clinical trial involving normolipidemic adults with low fruit and vegetable intakes. Participants underwent an oral fat tolerance test and 16S amplicon sequencing analysis of blood microbiota. Using the Qualitative Interaction Trees, we identified responders as those with higher baseline dietary fat intake (>38.5 g/day) and lipoprotein lipase levels (>150.6 ng/mL), who showed significant reductions in AUC for triglyceride (TG) and chylomicron-TG after the oral fat tolerance test. The LEfSe analysis showed differentially abundant blood microbiota between responders and non-responders. A penalized logistic regression algorithm was employed to predict the responsiveness to intervention on the TRL clearance based on the background characteristics, including the blood microbiome. Our findings suggest that PR intake can modulate postprandial TRL clearance in adults consuming higher fat intake over 38.5 g/day and low fruit and vegetable intake through shared links to systemic microbial signatures.


Sujet(s)
Hyperlipidémies , Adulte , Humains , Volontaires sains , Triglycéride , Hyperlipidémies/prévention et contrôle , Chylomicron , Période post-prandiale , Matières grasses alimentaires
6.
Microorganisms ; 11(3)2023 Mar 17.
Article de Anglais | MEDLINE | ID: mdl-36985350

RÉSUMÉ

AIMS: Scientists have recently discovered a link between the circulating microbiome and homeostasis, as well as the pathogenesis of a number of metabolic diseases. It has been demonstrated that low-grade chronic inflammation is one of the primary mechanisms that has long been implicated in the risk of cardio-metabolic disease (CMDs) and its progression. Currently, the dysbiosis of circulating bacteria is considered as a key regulator for chronic inflammation in CMDs, which is why we have conducted this systemic review focused on circulating bacterial dysbiosis. METHODS: A systemic review of clinical and research-based studies was conducted via PubMed, Scopus, Medline, and Web of Science. Literature was considered for risk of bias and patterns of intervention effects. A randomized effect model was used to evaluate the dysbiosis of circulating microbiota and clinical outcomes. We conducted a meta-analysis considering the circulating bacteria in both healthy people and people with cardio-metabolic disorders, in reports published mainly from 2008 to 2022, according to the PRISMA guidelines. RESULTS: We searched 627 studies and, after completing the risk of bias and selection, 31 studies comprising of 11,132 human samples were considered. This meta-analysis found that dysbiosis of phyla Proteobacteria, Firmicutes, and Bacteroidetes was associated with metabolic diseases. CONCLUSIONS: In most instances, metabolic diseases are linked to higher diversity and elevated bacterial DNA levels. Bacteroides abundance was higher in healthy people than with metabolic disorders. However, more rigorous studies are required to determine the role of bacterial dysbiosis in cardio-metabolic diseases. Understanding the relationship between dysbiosis and cardio-metabolic diseases, we can use the bacteria as therapeutics for the reversal of dysbiosis and targets for therapeutics use in cardio-metabolic diseases. In the future, circulating bacterial signatures can be used as biomarkers for the early detection of metabolic diseases.

7.
Front Pharmacol ; 14: 1306125, 2023.
Article de Anglais | MEDLINE | ID: mdl-38249346

RÉSUMÉ

Background: Chronic kidney disease (CKD) is now globally recognized as a critical public health concern. Vascular calcification (VC) represents a significant risk factor for cardiovascular events in individuals with CKD. It is the accessible and precise diagnostic biomarkers for monitoring the progression of CKD and the concurrent VC are urgently needed. Methods: The adenine diet-induced CKD rat model was utilized to investigate chronic kidney injury, calcification in the kidney and thoracic aorta, and dysregulation of biochemical indices. Enzyme-linked immune sandwich assays were employed to analyze changes in calcification-related proteins. 16S rRNA sequencing was performed to delineate the microbiota characteristics in the gut and blood of CKD-afflicted rats. Additionally, transcriptome sequencing of kidney tissue was conducted to explore the relationship between CKD-associated microbiota features and alterations in kidney function. Results: The adenine diet-induced CKD inhibited body weight gain, and led to kidney injury, and pronounced calcification in kidney and thoracic aorta. The microbiota both in the gut and blood of these affected rats exhibited significantly lower alpha diversity and distinctive beta diversity than those in their healthy counterparts. CKD resulted in dysregulation of several biochemical indices (including elevated levels of creatinine, low-density lipoprotein-cholesterol, sodium, phosphorous, total cholesterol, and urea and decreased levels of albumin, calcium, lactate dehydrogenase, and total bilirubin). Moreover, it upregulated calcification-related factors (bone sialoprotein [BSP], Klotho, fibroblast growth factor [FGF]-23, and sclerostin [SOST]) and lipopolysaccharide (LPS). Notably, the increased Acinetobacter in the blood was positively associated with calcifications in the kidney and thoracic aorta, in addition to the positive correlation with gut microbiota. The enrichment of Acinetobacter was concurrent with increases in calcification factors (BSP, FGF-23, and SOST), LPS, and phosphorous. Furthermore, transcriptome sequencing revealed that the enrichment of Acinetobacter was positively correlated with the majority of upregulated genes and negatively correlated with downregulated genes involved in the mineral absorption pathway. Conclusion: Our findings, for the first time, underscore that dysbiosis of symbiotic microbiota, both in the gut and blood, is involved in the progression of CKD. Particularly, the enrichment of Acinetobacter in blood emerges as a potential risk factor for CKD and its accompanying VC.

8.
Front Cell Infect Microbiol ; 12: 1067476, 2022.
Article de Anglais | MEDLINE | ID: mdl-36583109

RÉSUMÉ

Background: Characteristics of the blood microbiota among adult patients with community-acquired sepsis are poorly understood. Our aim was to analyze the composition of blood microbiota in adult patients with community-acquired sepsis, and correlate changes with non-septic control patients. Methods: A prospective observational study was carried out by including adult patients hospitalized for community-acquired sepsis at our center between January and November 2019, by random selection from a pool of eligible patients. Study inclusion was done on the day of sepsis diagnosis. Community acquisition was ascertained by a priori exclusion criteria; sepsis was defined according to the SEPSIS-3 definitions. Each included patient was matched with non-septic control patients by age and gender in a 1:1 fashion enrolled from the general population. Conventional culturing with BacT/ALERT system and 16S rRNA microbiota analysis were performed from blood samples taken in a same time from a patient. Abundance data was analyzed by the CosmosID HUB Microbiome software. Results: Altogether, 13 hospitalized patients were included, 6/13 (46.2%) with sepsis and 7/13 (53.8%) with septic shock at diagnosis. The most prevalent etiopathogen isolated from blood cultures was Escherichia coli, patients mostly had intraabdominal septic source. At day 28, all-cause mortality was 15.4% (2/13). Compared to non-septic control patients, a relative scarcity of Faecalibacterium, Blautia, Coprococcus and Roseburia genera, with an abundance of Enhydrobacter, Pseudomonas and Micrococcus genera was observed among septic patients. Relative differences between septic vs. non-septic patients were more obvious at the phylum level, mainly driven by Firmicutes (25.7% vs. 63.1%; p<0.01) and Proteobacteria (36.9% vs. 16.6%; p<0.01). The alpha diversity, quantified by the Chao1 index showed statistically significant difference between septic vs. non-septic patients (126 ± 51 vs. 66 ± 26; p<0.01). The Bray-Curtis beta diversity, reported by principal coordinate analysis of total hit frequencies, revealed 2 potentially separate clusters among septic vs. non-septic patients. Conclusion: In adult patients with community-acquired sepsis, specific changes in the composition and abundance of blood microbiota could be detected by 16S rRNA metagenome sequencing, compared to non-septic control patients. Traditional blood culture results only partially correlate with microbiota test results.


Sujet(s)
Microbiote , Sepsie , Humains , Adulte , Projets pilotes , ARN ribosomique 16S/génétique , Microbiote/génétique , Sepsie/microbiologie , Métagénome
9.
J Clin Lab Anal ; 36(12): e24779, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36447427

RÉSUMÉ

BACKGROUND: In almost every country, cardiovascular diseases are the major cause of death, which are responsible for 17.7 million deaths worldwide, or 54% of all deaths. However, the latest evidence has shown that non-communicable diseases such as obesity, diabetes, and cardiovascular events are significantly influenced by the blood microbiota and circulating metabolites. METHODS: We searched online databases for the most recent related papers through the comprehensive international databases of the Institute of PubMed/ MEDLINE, ISI/WOS, and Scopus up to August 2022, using MESH terms and the related keywords in the English language. Considering the titles and abstracts, unrelated studies were excluded. The full texts of the remained studies were evaluated by authors, independently. Then, the studies' findings were assessed and reported. RESULTS: The study demonstrated that the bacterial profiles of patients with cardiovascular diseases and healthy individuals are significantly different. The diseased patients showed a significantly high abundance of phylum Proteobacteria, an important Proteobacterial component known as lipopolysaccharides that has been linked to the pathogenesis of cardiovascular disease, while phylum Firmicutes were found in healthy individuals. It suggests that Proteobacteria has a direct role in the onset of cardiovascular disease. CONCLUSION: We focused on the blood bacterial composition and circulating microbial metabolites in their relationship with the etiology and onset of cardiovascular disease. However, the various genera and species in the results reported were not always identical. Therefore, the microbial community structure of blood was more complicated and thus required a more in-depth exploration.


Sujet(s)
Maladies cardiovasculaires , Microbiote , Humains , Maladies cardiovasculaires/épidémiologie , Bactéries
10.
Front Cell Infect Microbiol ; 12: 943808, 2022.
Article de Anglais | MEDLINE | ID: mdl-36268223

RÉSUMÉ

Emerging evidence revealed that the blood microbiota plays a role in several non-communicable diseases, including cardiovascular disease. However, the role of circulating microbes in atherosclerosis remains understudied. To test this hypothesis, we performed this study to investigate the microbial profile in the blood of Chines atherosclerosis volunteers. A total of seventy Acute Coronary Syndrome patients, seventy Chronic Coronary Syndrome patients, and seventy healthy individuals were examined using high-throughput Illumina Novaseq targeting the V3-V4 regions of the 16S rRNA gene. The relationship between atherosclerosis and blood microbiome, clinical variables, and their functional pathways were also investigated. Our study observed significantly higher alpha diversity indices (Chao1, p = 0.001, and Shannon, p = 0.004) in the acute coronary syndrome group compared with chronic coronary syndrome and healthy group, although a significantly lower alpha diversity was observed in the chronic coronary syndrome compared to acute coronary syndrome and healthy group. Beta diversity based on principal coordinate analysis demonstrated a major separation among the three groups. In addition, using linear discriminant analysis, a significant distinct taxon such as Actinobacteria _ phylum, and Staphylococcus_ genus in the healthy group; Firmicutes_ phylum, and Lactobacillus_ genus in the chronic coronary syndrome group, and Proteobacteria and Acidobacteriota _ phyla in acute coronary syndrome group were observed among three groups. Clusters of Orthologous Genes grouped and Kyoto Encyclopedia of Genes and Genomes pathways suggested a significant variation among all groups (p < 0.05). The blood microbiota analysis provides potential biomarkers for the detection of coronary syndromes in this population.


Sujet(s)
Syndrome coronarien aigu , Athérosclérose , Humains , ARN ribosomique 16S/génétique , Syndrome coronarien aigu/diagnostic , Bactéries/génétique , Marqueurs biologiques
11.
Front Cell Infect Microbiol ; 12: 932702, 2022.
Article de Anglais | MEDLINE | ID: mdl-36093202

RÉSUMÉ

Blood microorganisms were once thought to indicate infection. Blood in healthy people appears to be devoid of growing bacteria; nonetheless, intracellular dormant forms of bacteria have been reported previously. With breakthroughs in sequencing and bioinformatics, the presence of bacterial DNA in healthy human blood initiated the controversy of human blood microbiota (HBM). Recently, bacteria-specific DNA and culturable bacteria were found in healthy human blood. Researchers wanted to study the phenomena of a "healthy blood microbiota" by providing a thorough description of bacterially produced nucleic acids using many complementing molecular and traditional microbiological approaches. Because blood is a relatively limited and particular environment, culturability and plate count issues can be overcome using enhanced cultured procedures. However, more evidence is required to confirm that healthy human blood contains normal microbiota. Cavities, mouth and intestinal microbiota, trauma, surgery, and animal/insect bites can introduce bacteria into human blood. All these factors strengthen the concept of transient blood bacteria too. The presence of blood bacteria may be caused by temporary immunological clearance and absorption by dendritic or M cells. This review provides an extensive and comprehensive analysis that suggests that healthy blood bacteria may not be typical microbiota but transient circulatory microorganisms. In this study, we look at how contaminants (Escherichia, Shigella, Pseudomonads, etc.) from the skin, laboratory environments, and reagents can affect the interpretation of blood-derived microbial information and the relationship between the circulating bacteria and non-communicable diseases. Circulating transient bacteria may play a role in the pathogenesis of non-infectious diseases such as diabetes and CVD. Contamination-free hematological studies can aid in understanding the disease mechanisms, therapy, and biomarkers.


Sujet(s)
Microbiome gastro-intestinal , Maladies non transmissibles , Animaux , Bactéries/génétique , ADN bactérien/génétique , Dysbiose/microbiologie , Humains , Bouche/anatomopathologie
12.
J Pers Med ; 12(6)2022 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-35743724

RÉSUMÉ

Based on several reports that indicate the presence of blood microbiota in patients with diseases, we became interested in identifying the presence of bacteria in the blood of healthy individuals. Using 37 samples from 5 families, we extracted sequences that were not mapped to the human reference genome and mapped them to the bacterial reference genome for characterization. Proteobacteria account for more than 95% of the blood microbiota. The results of clustering by means of principal component analysis showed similar patterns for each age group. We observed that the class Gammaproteobacteria was significantly higher in the elderly group (over 60 years old), whereas the arcsine square root-transformed relative abundance of the classes Alphaproteobacteria, Deltaproteobacteria, and Clostridia was significantly lower (p < 0.05). In addition, the diversity among the groups showed a significant difference (p < 0.05) in the elderly group. This result provides meaningful evidence of a consistent phenomenon that chronic diseases associated with aging are accompanied by metabolic endotoxemia and chronic inflammation.

13.
Front Cell Infect Microbiol ; 12: 1091341, 2022.
Article de Anglais | MEDLINE | ID: mdl-36741978

RÉSUMÉ

Introduction: The blood microbiome is still an enigma. The existence of blood microbiota in clinically healthy individuals was proven during the last 50 years. Indirect evidence from radiometric analysis suggested the existence of living microbial forms in erythrocytes. Recently targeted nucleic acid sequencing demonstrated rich microbial biodiversity in the blood of clinically healthy individuals. The morphology and proliferation cycle of blood microbiota in peripheral blood mononuclear cells (PBMC) isolated from freshly drawn and cultured whole blood are obscure. Methods: To study the life cycle of blood microbiota we focused on light, and electron microscopy analysis. Peripheral blood mononuclear cells isolated from freshly drawn blood and stress-cultured lysed whole blood at 43°C in presence of vitamin K from healthy individuals were studied. Results: Here, we demonstrated that free circulating microbiota in the PMBC fraction possess a well-defined cell wall and proliferate by budding or through a mechanism similar to the extrusion of progeny bodies. By contrast, stress-cultured lysed whole blood microbiota proliferated as cell-wall deficient microbiota by forming electron-dense or electron-transparent bodies. The electron-dense bodies proliferated by fission or produce in chains Gram-negatively stained progeny cells or enlarged and burst to release progeny cells of 180 - 200 nm size. On the other hand, electron-transparent bodies enlarged and emitted progeny cells through the membrane. A novel proliferation mechanism of blood microbiota called by us "a cell within a cell" was observed. It combines proliferation of progeny cells within a progeny cell which is growing within the "mother" cell. Discussion: The rich biodiversity of eukaryotic and prokaryotic microbiota identified in blood by next-generation sequencing technologies and our microscopy results suggest different proliferation mechanisms in whole and cultured blood. Our documented evidence and conclusions provide a more comprehensive view of the existence of normal blood microbiota in healthy individuals.


Sujet(s)
Agranulocytes , Microbiote , Humains , Microscopie électronique , Érythrocytes
14.
Cells ; 10(6)2021 06 10.
Article de Anglais | MEDLINE | ID: mdl-34200572

RÉSUMÉ

The implications of the microbiome on Coronavirus disease 2019 (COVID-19) prognosis has not been thoroughly studied. In this study we aimed to characterize the lung and blood microbiome and their implication on COVID-19 prognosis through analysis of peripheral blood mononuclear cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage fluid (BALF) samples. In all three tissue types, we found panels of microbes differentially abundant between COVID-19 and normal samples correlated to immune dysregulation and upregulation of inflammatory pathways, including key cytokine pathways such as interleukin (IL)-2, 3, 5-10 and 23 signaling pathways and downregulation of anti-inflammatory pathways including IL-4 signaling. In the PBMC samples, six microbes were correlated with worse COVID-19 severity, and one microbe was correlated with improved COVID-19 severity. Collectively, our findings contribute to the understanding of the human microbiome and suggest interplay between our identified microbes and key inflammatory pathways which may be leveraged in the development of immune therapies for treating COVID-19 patients.


Sujet(s)
COVID-19/diagnostic , Agranulocytes/microbiologie , Poumon/microbiologie , Microbiote/physiologie , Liquide de lavage bronchoalvéolaire/microbiologie , Liquide de lavage bronchoalvéolaire/virologie , COVID-19/immunologie , COVID-19/microbiologie , COVID-19/virologie , Études cas-témoins , Humains , Agranulocytes/virologie , Biopsie liquide , Poumon/anatomopathologie , Poumon/virologie , Microbiote/génétique , Microbiote/immunologie , Pronostic , ARN bactérien/analyse , ARN fongique/analyse , RNA-Seq , SARS-CoV-2/physiologie
15.
PeerJ ; 9: e10846, 2021.
Article de Anglais | MEDLINE | ID: mdl-33628640

RÉSUMÉ

OBJECTIVE: To investigate the effects of periodontal treatment on the abundance and diversity of blood microbiota. METHODS AND MATERIALS: Twenty-seven periodontitis patients were randomly allocated to a control group (A) and two test groups (B1 and B2). Group A patients received full-mouth scaling and root planing (SRP), group B1 patients received subgingival glycine air polishing (GAP) right after SRP, and group B2 patients received subgingival glycine air polishing right before SRP. Peripheral blood samples were obtained at the baseline, the day after periodontal treatment, and 6 weeks after treatment and evaluated using nested polymerase chain reaction and 16SrRNA Gene Sequencing (Miseq platform). RESULTS: All participants exhibited significant improvements in the clinical parameters evaluated at the 6-week follow-up visit compared to the values at the baseline, but no significant differences were observed between the three groups. The total bacterial count was lowest in group B2. The bacterial species diversity (α-diversity) in group B1 was significantly higher (Chao-1 index, P = 0.03) and Porphyromonas and Pantoea were the dominant genera (linear discriminant analysis (LDA > 2)) in this group the day after treatment compared to the baseline. No significant difference was detected in the relative abundance and α-diversity of blood microbiota between the baseline and 6 weeks after treatment. CONCLUSION: Local periodontal treatment merely disrupts the stability of blood microbiota in the short term. Periodontitis treatment using full-mouth SRP followed by adjunctive GAP is a promising approach to reduce the introduction of bacteria into the bloodstream during the procedure.

16.
Microbiome ; 9(1): 1, 2021 01 02.
Article de Anglais | MEDLINE | ID: mdl-33388088

RÉSUMÉ

BACKGROUND: Targeted amplicon deep sequencing (TADS) has enabled characterization of diverse bacterial communities, yet the application of TADS to communities of parasites has been relatively slow to advance. The greatest obstacle to this has been the genetic diversity of parasitic agents, which include helminths, protozoa, arthropods, and some acanthocephalans. Meanwhile, universal amplification of conserved loci from all parasites without amplifying host DNA has proven challenging. Pan-eukaryotic PCRs preferentially amplify the more abundant host DNA, obscuring parasite-derived reads following TADS. Flaherty et al. (2018) described a pan-parasitic TADS method involving amplification of eukaryotic 18S rDNA regions possessing restriction sites only in vertebrates. Using this method, host DNA in total DNA extracts could be selectively digested prior to PCR using restriction enzymes, thereby increasing the number of parasite-derived reads obtained following NGS. This approach showed promise though was only as sensitive as conventional PCR. RESULTS: Here, we expand on this work by designing a second set of pan-eukaryotic primers flanking the priming sites already described, enabling nested PCR amplification of the established 18S rDNA target. This nested approach facilitated introduction of a second restriction digestion between the first and second PCR, reducing the proportional mass of amplifiable host-derived DNA while increasing the number of PCR amplification cycles. We applied this method to blood specimens containing Babesia, Plasmodium, various kinetoplastids, and filarial nematodes and confirmed its limit of detection (LOD) to be approximately 10-fold lower than previously described, falling within the range of most qPCR methods. CONCLUSIONS: The assay detects and differentiates the major malaria parasites of humans, along with several other clinically important blood parasites. This represents an important step towards a TADS-based universal parasite diagnostic (UPDx) test with a sufficient LOD for routine applications. Video Abstract.


Sujet(s)
Séquençage nucléotidique à haut débit/méthodes , Parasites/génétique , Parasites/isolement et purification , Animaux , Sang/parasitologie , Amorces ADN/génétique , DNA restriction enzymes/métabolisme , ADN ribosomique/génétique , Humains , Paludisme/parasitologie , Parasites/classification , Réaction de polymérisation en chaîne , ARN ribosomique 18S/génétique
17.
Front Cell Neurosci ; 14: 573422, 2020.
Article de Anglais | MEDLINE | ID: mdl-33192318

RÉSUMÉ

Objective: Hepatic encephalopathy (HE) characterized by neuropsychiatric abnormalities is a major complication of cirrhosis with high mortality. However, the pathogenesis of HE has not been fully elucidated. This study aimed to determine endogenous hydrogen sulfide (H2S) in the blood of HE patients and investigate the role of H2S in an astrocytic model of HE. Methods: Patients with and without HE were recruited to determine plasma H2S levels and blood microbial 16S rRNA gene. Rat astrocytes were employed as a model of HE by treatment of NH4Cl. Exogenous H2S was preadded. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay, and cell death was evaluated by lactate dehydrogenase (LDH) release. Apoptosis was determined by Hoechst 33342/Propidium Iodide (PI) Double Staining and Western blot analysis of apoptosis-related protein expression. Intracellular reactive oxygen species (ROS) levels were assessed by flow cytometer. Expressions of Nrf2 and its downstream regulated genes were examined by immunofluorescence staining and Western blot, respectively. Nrf2 gene knockdown was performed by antisense shRNA of Nrf2 gene. Results: There was a significant decrease in H2S levels in cirrhotic patients with HE compared with without HE. Blood microbiota analyses revealed that certain strains associated with H2S production were negatively correlated with HE. In vitro, H2S markedly attenuated NH4Cl-induced cytotoxicity, oxidative stress, and apoptosis. This effect was mediated by Nrf2/ARE signaling, and knockdown of Nrf2 expression abolished the antagonistic effect of H2S on NH4Cl-induced neurotoxicity in astrocytes. Conclusion: Levels of H2S and bacteria associated with H2S production are decreased in HE, and H2S functions as the neuroprotector against NH4Cl-induced HE by activating Nrf2/ARE signaling of astrocytes.

18.
Trends Endocrinol Metab ; 31(11): 835-847, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-33086076

RÉSUMÉ

Diabetes and cardiovascular disease (CVD) have evolved as the leading cause of mortality and morbidity worldwide. In addition to traditional risk factors, recent studies have established that the human microbiota, particularly gut bacteria, plays a role in the development of diabetes and CVD. Although the presence of microbes in blood has been known for centuries, mounting evidence in this metagenomic era provides new insights into the role of the blood microbiota in the pathogenesis of non-infectious diseases such as diabetes and CVD. We highlight the origin and physiology of the blood microbiota and circulating microbial metabolites in relation to the etiology and progression of diabetes and CVD. We also discuss translational perspectives targeting the blood microbiota in the diagnosis and treatment of diabetes and CVD.


Sujet(s)
Maladies cardiovasculaires/microbiologie , Diabète/microbiologie , Microbiote/physiologie , Animaux , Maladies cardiovasculaires/physiopathologie , Diabète/physiopathologie , Humains , Obésité/microbiologie , Obésité/physiopathologie
19.
J Am Heart Assoc ; 8(19): e011797, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31566105

RÉSUMÉ

Background The role of bacteria on the onset of cardiovascular disease has been suggested. Reciprocally, increased intestinal bacterial translocation and bloodstream infection are common comorbidities associated with heart failure and myocardial infarction (MI). In this context, the aim of this study was to analyze the blood microbiome in patients shortly after acute myocardial infarction. Methods and Results We carried out a case control study comparing 103 patients at high cardiovascular risk but free of coronary disease and 99 patients who had an MI. The blood microbiome was analyzed both quantitatively by 16S quantitative polymerase chain reaction and qualitatively by 16S targeted metagenomic sequencing specifically optimized for blood samples. A significant increase in blood bacterial 16S rDNA concentration was observed in patients admitted for MI. This increase in blood bacterial DNA concentration was independent of post-MI left ventricular function and was more marked in patients with low-density lipoprotein cholesterol ≥1 g/L. In addition, differences in the proportion of numerous bacterial taxa in blood were significantly modified with the onset of MI, thus defining a blood microbiota signature of MI. Among the bacterial taxa whose proportions are decreased in patients with MI, at least 6 are known to include species able to metabolize cholesterol. Conclusions These results could provide the basis for the identification of blood microbiome-based biomarkers for the stratification of MI patients. Furthermore, these findings should provide insight into the mechanism underlying the negative correlation reported between low-density lipoprotein cholesterol concentration and the prognosis at the acute onset of MI and mortality. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02405468.


Sujet(s)
Bactéries/génétique , Cholestérol LDL/sang , ADN bactérien/génétique , Dyslipidémies/sang , Microbiote , Infarctus du myocarde/sang , Infarctus du myocarde/microbiologie , Sujet âgé , Bactéries/classification , Bactéries/métabolisme , Marqueurs biologiques/sang , Études cas-témoins , ADN bactérien/sang , Dyslipidémies/diagnostic , Femelle , Humains , Mâle , Métagénomique , Adulte d'âge moyen , Infarctus du myocarde/diagnostic , Projets pilotes , Ribotypage
20.
Front Microbiol ; 10: 1122, 2019.
Article de Anglais | MEDLINE | ID: mdl-31214131

RÉSUMÉ

Microbial infection of the placenta, amniotic fluid, vaginal canal, and oral cavity is known to significantly contribute to preterm birth (PTB). Although microbes can be translocated into the blood, little is known regarding the blood microbiota during pregnancy. To assess changes in the microbiome during pregnancy, blood samples were obtained 2 or 3 times during pregnancy from a cohort of 45 pregnant women enrolled between 2008 and 2010. To analyze the association with PTB, we conducted a case-control study involving 41 pregnant women upon admission for preterm labor and rupture of membrane (20 with term delivery; 21 with PTB). Bacterial diversity was assessed in number and composition between the first, second, and third trimesters in term delivered women according to 16S rRNA gene amplicon sequencing, and data were analyzed using Quantitative Insight Into Microbial Ecology (QIIME). Taxonomy was assigned using the GreenGenes 8.15.13 database. Dominant microorganisms at the phylum level in all pregnant women were identified as Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. However, the number and composition of bacteria in women with PTB differed from that in women with term delivery. Firmicutes and Bacteroidetes were more abundant in women with PTB than in women with term delivery, while Proteobacteria was less prevalent in women with PTB. At the genus level, Bacteroides, Lactobacillus, Sphingomonas, Fastidiosipila, Weissella, and Butyricicoccus were enriched in PTB samples. These observational results suggest that several taxa in the maternal blood microbiome are associated with PTB. Further studies are needed to confirm the composition of the blood microbiota in women with PTB. Additionally, the mechanism by which pathogenic microbes in maternal blood cause infection and PTB requires further analysis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE