Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Gamme d'année
1.
Biol Res ; 56(1): 51, 2023 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-37773178

RÉSUMÉ

BACKGROUND: Nitric oxide is produced by different nitric oxide synthases isoforms. NO activates two signaling pathways, one dependent on soluble guanylate cyclase and protein kinase G, and other where NO post-translationally modifies proteins through S-nitrosylation, which is the modification induced by NO in free-thiol cysteines in proteins to form S-nitrosothiols. High levels of NO have been detected in blood of breast cancer patients and increased NOS activity has been detected in invasive breast tumors compared to benign or normal breast tissue, suggesting a positive correlation between NO biosynthesis, degree of malignancy and metastasis. During metastasis, the endothelium plays a key role allowing the adhesion of tumor cells, which is the first step in the extravasation process leading to metastasis. This step shares similarities with leukocyte adhesion to the endothelium, and it is plausible that it may also share some regulatory elements. The vascular cell adhesion molecule-1 (VCAM-1) expressed on the endothelial cell surface promotes interactions between the endothelium and tumor cells, as well as leukocytes. Data show that breast tumor cells adhere to areas in the vasculature where NO production is increased, however, the mechanisms involved are unknown. RESULTS: We report that the stimulation of endothelial cells with interleukin-8, and conditioned medium from breast tumor cells activates the S-nitrosylation pathway in the endothelium to induce leukocyte adhesion and tumor cell extravasation by a mechanism that involves an increased VCAM-1 cell surface expression in endothelial cells. We identified VCAM-1 as an S-nitrosylation target during this process. The inhibition of NO signaling and S-nitrosylation blocked the transmigration of tumor cells through endothelial monolayers. Using an in vivo model, the number of lung metastases was inhibited in the presence of the S-nitrosylation inhibitor N-acetylcysteine (NAC), which was correlated with lower levels of S-nitrosylated VCAM-1 in the metastases. CONCLUSIONS: S-Nitrosylation in the endothelium activates pathways that enhance VCAM-1 surface localization to promote binding of leukocytes and extravasation of tumor cells leading to metastasis. NAC is positioned as an important tool that might be tested as a co-therapy against breast cancer metastasis.


Sujet(s)
Tumeurs du sein , Humains , Femelle , Tumeurs du sein/anatomopathologie , Adhérence cellulaire , Cellules endothéliales , Molécule-1 d'adhérence des cellules vasculaires/métabolisme , Monoxyde d'azote/métabolisme , Melanoma, Cutaneous Malignant
2.
Front Pharmacol ; 14: 1175702, 2023.
Article de Anglais | MEDLINE | ID: mdl-37153807

RÉSUMÉ

The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.

3.
Funct Integr Genomics ; 23(2): 171, 2023 May 22.
Article de Anglais | MEDLINE | ID: mdl-37211553

RÉSUMÉ

Metastasis is a multi-step process that leads to the dissemination of tumor cells to new sites and, consequently, to multi-organ neoplasia. Although most lethal breast cancer cases are related to metastasis occurrence, little is known about the dysregulation of each step, and clinicians still lack reliable therapeutic targets for metastasis impairment. To fill these gaps, we constructed and analyzed gene regulatory networks for each metastasis step (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis). Through topological analysis, we identified E2F1, EGR1, EZH2, JUN, TP63, and miR-200c-3p as general hub-regulators, FLI1 for cell-adhesion loss specifically, and TRIM28, TCF3, and miR-429 for angiogenesis. Applying the FANMOD algorithm, we identified 60 coherent feed-forward loops regulating metastasis-related genes associated with distant metastasis-free survival prediction. miR-139-5p, miR-200c-3p, miR-454-3p, and miR-1301-3p, among others, were the FFL's mediators. The expression of the regulators and mediators was observed to impact overall survival and to go along with metastasis occurrence. Lastly, we selected 12 key regulators and observed that they are potential therapeutic targets for canonical and candidate antineoplastics and immunomodulatory drugs, like trastuzumab, goserelin, and calcitriol. Our results highlight the relevance of miRNAs in mediating feed-forward loops and regulating the expression of metastasis-related genes. Altogether, our results contribute to understanding the multi-step metastasis complexity and identifying novel therapeutic targets and drugs for breast cancer management.


Sujet(s)
Tumeurs du sein , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Métastase tumorale , Régulation de l'expression des gènes tumoraux , Facteurs de transcription/génétique , microARN/génétique , Réseaux de régulation génique , Humains
4.
Noncoding RNA ; 9(1)2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36827545

RÉSUMÉ

Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.

5.
Mol Cell Endocrinol ; 430: 56-67, 2016 07 15.
Article de Anglais | MEDLINE | ID: mdl-27095481

RÉSUMÉ

Breast cancer is the major cause of cancer-related death in women. Its treatment is particularly difficult when metastasis occurs. The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cells are able to remodel the actin cytoskeleton, which requires the recruitment of numerous structural and regulatory proteins that modulate actin filaments dynamics, including Paxillin or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17-ß estradiol (E2) induces phosphorylation of Paxillin and its translocation toward membrane sites where focal adhesion complexes are assembled. This cascade is triggered by a Gαi1/Gß protein-dependent signaling of estrogen receptor α (ERα) to c-Src, focal adhesion kinase (FAK) and Paxillin. Within this complex, activated Paxillin recruits the small GTPase Cdc42, which triggers N-WASP phosphorylation. This results in the redistribution of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of Paxillin, Cdc42 and N-WASP is necessary for cell adhesion, migration and invasion induced by E2 in breast cancer cells. In parallel, we investigated whether Raloxifene (RAL), a selective estrogen receptor modulator (SERMs), could inhibit or revert the effects of E2 in breast cancer cell movement. We found that, in the presence of E2, RAL acts as an ER antagonist and displays an inhibitory effect on estrogen-promoted cell adhesion and migration via FAK/Paxillin/N-WASP. Our findings identify an original mechanism through which estrogen regulates breast cancer cell motility and invasion via Paxillin. These results may have clinical relevance for the development of new therapeutic strategies for cancer treatment.


Sujet(s)
Complexe Arp-2-3/métabolisme , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Oestrogènes/métabolisme , Focal adhesion protein-tyrosine kinases/métabolisme , Paxilline/métabolisme , Transduction du signal , Protéine neuronale du syndrome de Wiskott-Aldrich/métabolisme , Cytosquelette d'actine/effets des médicaments et des substances chimiques , Cytosquelette d'actine/métabolisme , Adhérence cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Mouvement cellulaire/effets des médicaments et des substances chimiques , Récepteur alpha des oestrogènes/métabolisme , Femelle , Sous-unités alpha Gi-Go des protéines G/métabolisme , Sous-unités bêta des protéines G/métabolisme , Humains , Invasion tumorale , Phosphorylation/effets des médicaments et des substances chimiques , Transport des protéines/effets des médicaments et des substances chimiques , Chlorhydrate de raloxifène/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Protéine G cdc42/métabolisme , src-Family kinases/métabolisme
6.
Clin Breast Cancer ; 15(6): 426-31, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26516037

RÉSUMÉ

The normal physiologic stress mechanism, mediated by the sympathetic nervous system, causes a release of the neurotransmitters epinephrine and norepinephrine. Preclinical data have demonstrated an effect on tumor progression and metastasis via the sympathetic nervous system mediated primarily through the ß-adrenergic receptor (ß-AR) pathway. In vitro data have shown an increase in tumor growth, migration, tumor angiogenesis, and metastatic spread in breast cancer through activation of the ß-AR. Retrospective cohort studies on the clinical outcomes of ß-blockers in breast cancer outcomes showed no clear consensus. The purpose of this study was to perform a systematic review and meta-analysis of the effect of ß-blockers on breast cancer outcomes. A systematic review was performed using the Cochrane library and PubMed. Publications between the dates of January 2010 and December 2013 were identified. Available hazard ratios (HRs) were extracted for breast cancer recurrence, breast cancer death, and all-cause mortality and pooled using a random effects meta-analysis. A total of 7 studies contained results for at least 1 of the outcomes of breast cancer recurrence, breast cancer death, or all-cause mortality in breast cancer patients receiving ß-blockers. In the 5 studies that contained results for breast cancer recurrence, there was no statistically significant risk reduction (HR, 0.67; 95% confidence interval [CI], 0.39-1.13). Breast cancer death results were contained in 4 studies, which also suggested a significant reduction in risk (HR, 0.50; 95% CI, 0.32-0.80). Among the 4 studies that reported all-cause mortality, there was no significant effect of ß-blockers on risk (HR, 1.02; 95% CI, 0.75-1.37). Results of this systematic review and meta-analysis suggest that the use of ß-blockers significantly reduced risk of breast cancer death among women with breast cancer.


Sujet(s)
Antagonistes bêta-adrénergiques/usage thérapeutique , Tumeurs du sein/mortalité , Tumeurs du sein/anatomopathologie , Récidive tumorale locale/mortalité , Récidive tumorale locale/anatomopathologie , Femelle , Humains
7.
Biol. Res ; 48: 1-8, 2015. ilus, graf
Article de Anglais | LILACS | ID: biblio-950801

RÉSUMÉ

BACKGROUND: Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. RESULTS: In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes. CONCLUSION: Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma.


Sujet(s)
Humains , Tumeurs du cerveau/anatomopathologie , Glycoprotéines membranaires/pharmacologie , Apoptose , Sémaphorines/pharmacologie , microARN/antagonistes et inhibiteurs , Prolifération cellulaire , Gliome/anatomopathologie , Tumeurs du cerveau/métabolisme , Glycoprotéines membranaires/génétique , Transduction du signal , Régulation de l'expression des gènes tumoraux , Mouvement cellulaire , Technique de Western , Sémaphorines/génétique , microARN/métabolisme , Lignée cellulaire tumorale , Réaction de polymérisation en chaine en temps réel , Gliome/métabolisme , Luciferases/métabolisme , Invasion tumorale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE