Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 399
Filtrer
1.
Carbohydr Polym ; 343: 122479, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39174138

RÉSUMÉ

Stem cell culture often requires various animal-derived components such as serum and collagen. This limits its practical use. Therefore, xeno-free (xenogeneic component-free) culture systems are receiving increased attention. Herein, we propose xeno-free, plant-derived cellulose nanofibers (CNFs) with different surface chemistry: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs (TOCNFs) with carboxy groups and surface-sulfated CNFs (S-CNFs) for the proliferation of human mesenchymal stem cells (hMSCs) under various serum conditions. We cultured bone marrow-derived hMSCs on CNF scaffolds with various fiber lengths and functional group contents. Original CNFs were bioinert materials that did not contribute to cell adhesion. In contrast, the surface-modified CNFs facilitated the proliferation of immortalized hMSCs under normal and low-serum conditions. The TOCNFs (COONa: 1.47 mmol g-1; length: 0.53 µm), the S-CNFs (OSO3Na: 0.64 mmol g-1; 0.61 µm), and a combination of the two (1:1 by weight) enabled immortalized hMSCs to maintain their multipotency, even under serum-free conditions. Primary cultured hMSCs proliferated well on the TOCNF/S-CNF scaffolds in a completely serum-free medium, comparable to animal-derived type I collagen, although few hMSCs adhered to the standard polystyrene substrate. Our strategy of using surface-modified CNFs will inform the development of xeno-free culture systems to avoid the use of animal-derived materials for both cell culture media and scaffolds.


Sujet(s)
Prolifération cellulaire , Cellulose , Cellules souches mésenchymateuses , Nanofibres , Structures d'échafaudage tissulaires , Humains , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Nanofibres/composition chimique , Cellulose/composition chimique , Structures d'échafaudage tissulaires/composition chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Propriétés de surface , Adhérence cellulaire/effets des médicaments et des substances chimiques , N-oxydes cycliques/composition chimique , Techniques de culture cellulaire/méthodes , Différenciation cellulaire/effets des médicaments et des substances chimiques
2.
Angew Chem Int Ed Engl ; : e202413949, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39148491

RÉSUMÉ

Herein, we report a synergistic photoredox/palladium catalytic system for the efficient enantioconvergent synthesis of axially chiral esters from racemic heterobiaryl (pseudo)halides (bromides/triflates) with CO2 and alkyl bromides under mild conditions. A wide range of axially chiral esters were obtained in good to high yields with excellent enantioselectivities. Detailed mechanistic studies unveiled that the ratio of photocatalyst and palladium catalyst exhibited significant impact on the chemo- and enantioselectivities of the reaction. Kinetic studies and control experiments supported the proposed mechanism involving cascade asymmetric carboxylation followed by SN2 substitution. The achievement of high enantioselectivity relies not only on the choice of synergistic metallaphotoredox catalysts but also on the utilization of alkyl bromides, which trap the generated chiral carboxylic anions in situ, thus preventing their immediate racemization.

3.
Angew Chem Int Ed Engl ; : e202408802, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039037

RÉSUMÉ

The direct production of hydrogen peroxide (H2O2) through photocatalytic reaction via H2O and O2 is considered as an ideal approach. However, the efficiency of H2O2 generation is generally limited by insufficient charge and mass transfer. Covalent organic framework (COFs) offer a promising platform as metal-free photocatalyst for H2O2 production due to their potential for rational design at the molecular level. Herein, we integrated the multipolar structures and carboxyl groups into COFs to enhance the efficiency of photocatalytic H2O2 production in pure water without any sacrificial agents. The introduction of octupolar and quadrupolar structures, along with an increase of molecular planarity, created efficient oxygen reduction reaction (ORR) sites. Meanwhile, carboxyl groups could not only boost O2 and H2O2 movement via enhancement of pore hydrophilicity, but also promote proton conduction, enabling the conversion to H2O2 from ·O2-, which is the crucial intermediate product in H2O2 photocatalysis. Overall, we demonstrate that TACOF-1-COOH, consisting of optimal octupolar and quadrupolar structures, along with enrichment sites (carboxyl groups), exhibited a H2O2 yield rate of 3542 µmol h-1 g-1 and a solar-to-chemical (SCC) efficiency of 0.55%. This work provides valuable insights for designing metal-free photocatalysts for efficient H2O2 production.

4.
ChemMedChem ; : e202400307, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39022854

RÉSUMÉ

Carbon dioxide (CO2) is an economically viable and abundant carbon source that can be incorporated into compounds such as 1,3-azoles relevant to the pharmaceutical, cosmetics, and pesticide industries. Of the 2.4 million commercially available C2-unsubstituted 1,3-azole compounds, less than 1 % are currently purchasable as their C2-carboxylated derivatives, highlighting the substantial gap in compound availability. This availability gap leaves ample opportunities for exploring the synthetic accessibility and use of carboxylated azoles in bioactive compounds. In this study, we analyze and quantify the relevance of C2-carboxylated 1,3-azoles in small-molecule research. An analysis of molecular databases such as ZINC, ChEMBL, COSMOS, and DrugBank identified relevant C2-carboxylated 1,3-azoles as anticoagulant and aroma-giving compounds. Moreover, a pharmacophore analysis highlights promising pharmaceutical potential associated with C2-carboxylated 1,3-azoles, revealing the ATP-sensitive inward rectifier potassium channel 1 (KATP) and Kinesin-like protein KIF18A as targets that can potentially be addressed with C2-carboxylated 1,3-azoles. Moreover, we identified several bioisosteres of C2-carboxylated 1,3-azoles. In conclusion, further exploration of the chemical space of C2-carboxylated 1,3-azoles is encouraged to harness their full potential in drug discovery and related fields.

5.
Chem Asian J ; : e202400613, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39018086

RÉSUMÉ

In this study, a difluorocarbene-promoted O-O bond activation of peroxy acids is developed through the insertion of difluorocarbene into O-H bond. This activation strategy in synergy with O-B coordination with boronic acids/ester greatly polarizes the O-O bond for in-situ generation of carboxylium species that reacts with the nucleophilic part of boronic acids in a concerted way to produce esters. Good efficiency and functional group tolerance are demonstrated. Application of this method to the functionalization of a boronic acid drug used as HSL enzyme inhibitor produces smoothly the ester derivative. This difluorocarbene-mediated O-O bond activation strategy is conceptually different from traditional radical type methods, and is also complementary to conventional esterification methods with a distinct retro-synthetic disconnection.

6.
Int J Biol Macromol ; 275(Pt 2): 133708, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38977050

RÉSUMÉ

The effects of carboxylation degree (0.3-2.4 mmol/g) of cellulose nanofiber (CNF) on the microstructure and mechanical properties of edible walnut oleogels were comprehensively examined. The oleogels were well prepared by emulsion-templated approach for potential substitute of conventional saturated or trans-fats in food products. The results demonstrated that the oil-binding capacity (OBC) and textural strength of oleogels enhanced with the increase of CNF carboxyl content, while the structural strength (G' in rheological measurement) and the resistance to shear thinning was first decreased and then increased. It possibly reflected the competition on the dominant structuring mechanism by hydrogen bonding from cellulose hydroxyl groups and electrostatic interactions from -COONa function. With the combined mechanism, oleogel with low structural strength and relatively high OBC (CNF carboxyl content of 1.2 mmol/g, OBC >83 %, G' ≈ 7 × 104 Pa and firmness of 0.30 N) and oleogel with enough structural rigidity and high OBC (CNF carboxyl content of 1.8 mmol/g, OBC >89 %, G' of up to 1.7 × 105 Pa, and firmness of up to 0.66 N) were both fabricated. This reveals the feasibility of regulating oleogel structure and textual properties by using CNF as the unique oleogelator and simply changing its surface carboxyl function.


Sujet(s)
Cellulose , Juglans , Nanofibres , Composés chimiques organiques , Rhéologie , Cellulose/composition chimique , Juglans/composition chimique , Composés chimiques organiques/composition chimique , Nanofibres/composition chimique
7.
Molecules ; 29(11)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38893403

RÉSUMÉ

Conversion of CO2 into organic chemicals offers a promising route for advancing the circularity of carbon capture, utilisation, and storage in line with the international 2050 Net Zero agenda. The widely known commercialised chemical fixation of CO2 into organic chemicals is the century-old Kolbe-Schmitt reaction, which carboxylates phenol (via sodium phenoxide) into salicylic acid. The carboxylation reaction is normally carried out between the gas-solid phases in a batch reactor. The mass and heat transfer limitations of such systems require rather long reaction times and a high pressure of CO2 and are often characterised by the low formation of undesirable side products. To address these drawbacks, a novel suspension-based carboxylation method has been designed and carried out in this present study, where sodium phenoxide is dispersed in toluene to react with CO2. Importantly, the addition of phenol played a critical role in promoting the stoichiometric conversion of phenoxide to salicylic acid. Under the optimal conditions of a phenol/phenoxide molar ratio of 2:1 in toluene, a reaction temperature of 225 °C, a CO2 pressure of 30 bar, a reaction time of 2 h, and stirring at 1000 rpm, an impressive salicylic acid molar yield of 92.68% has been achieved. The reaction mechanism behind this has been discussed. This development provides us with the potential to achieve a carboxylation reaction of phenoxide with CO2 more effectively in a continuous reactor. It can also facilitate the large-scale fixing of CO2 into hydroxy aromatic carboxylic acids, which can be used as green organic chemical feedstocks for making various products, including long-lived polymeric materials.

8.
Methods Mol Biol ; 2792: 163-173, 2024.
Article de Anglais | MEDLINE | ID: mdl-38861086

RÉSUMÉ

Photosynthesis and metabolism in plants involve oxygen as both a product and substrate. Oxygen is taken up during photorespiration and respiration and produced through water splitting during photosynthesis. To distinguish between processes that produce or consume O2 in leaves, isotope mass separation and detection by mass spectrometry allows measurement of evolution and uptake of O2 as well as CO2 uptake. This chapter describes how to calculate the rate of Rubisco oxygenation and carboxylation from in vivo gas exchange of stable isotopes of 16O2 and 18O2 with a closed cuvette system for leaf discs and membrane inlet mass spectrometry.


Sujet(s)
Spectrométrie de masse , Oxygène , Photosynthèse , Spectrométrie de masse/méthodes , Oxygène/métabolisme , Isotopes de l'oxygène/métabolisme , Feuilles de plante/métabolisme , Dioxyde de carbone/métabolisme , Ribulose bisphosphate carboxylase/métabolisme , Respiration cellulaire
9.
Angew Chem Int Ed Engl ; : e202407430, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38884885

RÉSUMÉ

The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT calculation, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.

10.
ACS Appl Mater Interfaces ; 16(24): 31085-31097, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38837183

RÉSUMÉ

Carbon dioxide (CO2) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO2 is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO2 conversion into carboxylic acid under ambient conditions. Notably, the TaTpBpy-Ni COFs film showed excellent photocatalytic activity for the carboxylation of various arylamines with CO2 to the corresponding arylcarboxylic acid via C-N bond activation under solar-light irradiation. Moreover, this carboxylation protocol exhibits mild reaction conditions and good functional group tolerance without the necessity of using stoichiometric metallic reductants. This work shows a benchmark example of not only the interfacially synthesized COFs film used as a photocatalyst for solar-light energy utilization but also the selective solar chemical production system of arylcarboxylic acid directly from CO2.

11.
Neuro Oncol ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38869884

RÉSUMÉ

BACKGROUND: Glioblastoma (GBM) is a highly aggressive tumor with unmet therapeutic needs, which can be explained by extensive intra-tumoral heterogeneity and plasticity. In this study, we aimed to investigate the specific metabolic features of Glioblastoma stem cells (GSC), a rare tumor subpopulation involved in tumor growth and therapy resistance. METHODS: We conducted comprehensive analyses of primary patient-derived GBM cultures and GSC-enriched cultures of human GBM cell lines using state-of-the-art molecular, metabolic and phenotypic studies. RESULTS: We showed that GSC-enriched cultures display distinct glycolytic profiles compared with differentiated tumor cells. Further analysis revealed that GSC relies on pyruvate carboxylase activity for survival and self-renewal capacity. Interestingly, inhibition of pyruvate carboxylase led to GSC death, particularly when the glutamine pool was low, and increased differentiation. Finally, while GSC displayed resistance to the chemotherapy drug etoposide, genetic or pharmacological inhibition of pyruvate carboxylase restored etoposide sensitivity in GSC, both in vitro and in orthotopic murine models. CONCLUSION: Our findings demonstrate the critical role of pyruvate carboxylase in GSC metabolism, survival and escape to etoposide. They also highlight pyruvate carboxylase as a therapeutic target to overcome therapy resistance in GBM.

12.
ChemSusChem ; : e202400517, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890556

RÉSUMÉ

Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.

13.
Chemistry ; : e202401754, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38923037

RÉSUMÉ

Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.

14.
Chemistry ; : e202401631, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38924598

RÉSUMÉ

The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.

15.
Bioresour Technol ; 403: 130843, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38777233

RÉSUMÉ

The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.


Sujet(s)
Biocatalyse , Dioxyde de carbone , Malate dehydrogenase , Malates , Acide pyruvique , Malates/métabolisme , Dioxyde de carbone/métabolisme , Malate dehydrogenase/métabolisme , Acide pyruvique/métabolisme , NAD/métabolisme , Décarboxylation , Cinétique , Mutation
16.
Environ Pollut ; 355: 124217, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38797346

RÉSUMÉ

Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.


Sujet(s)
Dépollution biologique de l'environnement , Biofilms , Acides phtaliques , Plastifiants , Espèces réactives de l'oxygène , Plastifiants/toxicité , Biofilms/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Acides phtaliques/toxicité , Acides phtaliques/métabolisme , Rhodococcus/métabolisme , Rhodococcus/effets des médicaments et des substances chimiques , Poly(chlorure de vinyle)/toxicité , Phtalate de bis[2-éthylhexyle]/toxicité
17.
J Colloid Interface Sci ; 671: 232-247, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38810338

RÉSUMÉ

Multi-functional MOF catalyst with oxidative- and acid- centers showed potential in olefins oxidative carboxylation to cyclic carbonates directly. In this work, a series of bimetallic MnZn-MOF-74 with different molar ratios of Mn and Zn were synthesized successfully through a one-pot facile method. Thoroughly characterization indicated that the existence of Zn regulated the valance state distribution of Mn in the obtained MnZn-MOF-74. Mn99.3Zn0.7-MOF-74 with the highest ratio of MnIII (61.3 %) performed the most efficient activity for olefin direct tandem oxidative carboxylation reaction using aqueous tert-butyl hydroperoxide oxidant under solvent-free condition of 90 °C, 1.0 MPa CO2 and 4 h. Mn99.3Zn0.7-MOF-74 also showed satisfactory versatility and recyclability. Based on the experiments, a feasible mechanism was presented. Thanks to the high ratio of active MnIII as main oxidative center, the coordination unsaturated bimetal Mn and Zn as Lewis-acid sites, O2- of metal - O as Lewis-base sites and combined effect with Bu4NBr cocatalyst, Mn99.3Zn0.7-MOF-74 presented efficient performance for the direct synthesis of cyclic carbonates from olefins. The metal Zn in MOF can regulate the valance state distribution of Mn and result in efficient catalytic property, presenting a potential avenue for direct oxidative carboxylation reaction of olefins to cyclic carbonates synthesis.

18.
Cells ; 13(10)2024 May 18.
Article de Anglais | MEDLINE | ID: mdl-38786095

RÉSUMÉ

The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of this mechanism in the brain is not known. We report here the endogenous expression of multiple components of the vitamin K cycle within the mouse brain at various ages as well as in distinct brain glial cells. The brain expression of all genes was increased in the postnatal ages, mirroring their profiles in the liver. In microglia, the proinflammatory agent lipopolysaccharide caused the downregulation of all key vitamin K cycle genes. A secreted Gas6 protein was detected in the medium of both mouse cerebellar slices and brain glial cell cultures. Furthermore, the endogenous Gas6 γ-carboxylation level was abolished through incubation with the vitamin K antagonist warfarin and could be restored through co-incubation with vitamin K1. Finally, the γ-carboxylation level of the Gas6 protein within the brains of warfarin-treated rats was found to be significantly reduced ex vivo compared to the control brains. In conclusion, we demonstrated for the first time the existence of a functional vitamin K cycle within rodent brains, which regulates the functional modification of endogenous brain Gas6. These results indicate that vitamin K is an important nutrient for the brain. Furthermore, the measurement of vitamin K-dependent Gas6 functionality could be an indicator of homeostatic or disease mechanisms in the brain, such as in neurological disorders where Gas6/TAM signalling is impaired.


Sujet(s)
Encéphale , Protéines et peptides de signalisation intercellulaire , Vitamine K , Animaux , Protéines et peptides de signalisation intercellulaire/métabolisme , Vitamine K/métabolisme , Vitamine K/pharmacologie , Encéphale/métabolisme , Souris , Souris de lignée C57BL , Rats , Mâle , Warfarine/pharmacologie , Microglie/métabolisme , Lipopolysaccharides/pharmacologie , Névroglie/métabolisme
19.
J Asian Nat Prod Res ; 26(9): 1087-1093, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38676379

RÉSUMÉ

Many organic reactions rely on CO2 sources to generate important structural units and valuable chemicals. In this study, we compared the effects of cannabidiol (CBD) and cannabidiolic acid (CBDA) on the supercritical CO2 (scCO2)-induced de/carboxylation reaction. The results showed that CBD was directly carboxylated in the ortho-position to form CBDA with up to 62% conversion. Meanwhile, CBDA decarboxylation occurred on hemp plant material via varying composition. Mechanistic studies revealed that CBD carboxylation was influenced not only by the physical properties of scCO2, but also by the vegetable matrix.


Sujet(s)
Cannabidiol , Cannabinoïdes , Cannabis , Dioxyde de carbone , Cannabidiol/composition chimique , Cannabis/composition chimique , Cannabinoïdes/composition chimique , Dioxyde de carbone/composition chimique , Structure moléculaire , Décarboxylation
20.
Chempluschem ; : e202400171, 2024 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-38679579

RÉSUMÉ

Recent development in photocatalysis is increasingly focused on transforming organic compounds toward producing fine chemicals. Simple, non-selective oxidation reactions (degradation of pollutants) and very demanding solar-to-chemical energy conversion processes (production of solar fuels) face severe economic limitations influenced by still low efficiency and insufficient stability of the systems. Synthesis of fine chemicals, including reductive and oxidative selective transformations, as well as C-C and C-N coupling reactions, can utilise the power of photocatalysis. Herein, we present the recent progress in photocatalytic systems designed to synthesise fine chemicals. In particular, we discuss the factors influencing the efficiency and selectivity of the organic transformations, dividing them into intrinsic (related to individual properties of photocatalysts) and extrinsic (originating from the reaction environment). A rational design of the photocatalytic systems, based on a deep understanding of these factors, opens new perspectives for applied photocatalysis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE