Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Gamme d'année
1.
Acta cir. bras. ; 36(3): e360303, 2021. graf, ilus, tab
Article de Anglais | VETINDEX | ID: vti-30492

RÉSUMÉ

Purpose: This study aimed to elaborate a hydrogel constituted by carboxymethyl chitosan (CMC), hyaluronic acid (HA) and silver (Ag) and to evaluate its healing effect on partial-thickness burn wounds experimentally induced in rats. Methods: CMC was obtained by chitosan reacting with monochloroacetic acid. The carboxymethylation was confirmed by Fourier-transform infrared spectroscopy and hydrogen nuclear magnetic resonance (NMR). Scanning electron microscopy was used to determine the morphological characteristics of chitosan and CMC. After the experimental burn wound induction, the animals (n = 126) were treated with different CMC formulations, had their occlusive dressings changed daily and were followed through 7, 14 and 30 days. Morphometric, macroscopic and microscopic aspects and collagen quantification were evaluated. Results: Significative wound contraction, granulation tissue formation, inflammatory infiltration and collagen fibers deposit throughout different phases of the healing process were observed in the CMC hydrogels treated groups. Conclusion: The results showed that, in the initial phase of the healing process, the most adequate product was the CMC/HA/Ag association, while in the other phases the CMC/HA association was the best one to promote the healing of burn wounds.(AU)


Sujet(s)
Animaux , Rats , 33783/usage thérapeutique , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Brûlures/thérapie
2.
Acta cir. bras ; Acta cir. bras;36(3): e360303, 2021. tab, graf
Article de Anglais | LILACS, VETINDEX | ID: biblio-1284909

RÉSUMÉ

ABSTRACT Purpose This study aimed to elaborate a hydrogel constituted by carboxymethyl chitosan (CMC), hyaluronic acid (HA) and silver (Ag) and to evaluate its healing effect on partial-thickness burn wounds experimentally induced in rats. Methods CMC was obtained by chitosan reacting with monochloroacetic acid. The carboxymethylation was confirmed by Fourier-transform infrared spectroscopy and hydrogen nuclear magnetic resonance (NMR). Scanning electron microscopy was used to determine the morphologicalcharacteristics of chitosan and CMC. After the experimental burn wound induction, the animals (n = 126) were treated with different CMC formulations, had their occlusive dressings changed daily and were followed through 7, 14 and 30 days. Morphometric, macroscopic and microscopic aspects and collagen quantification were evaluated. Results Significative wound contraction, granulation tissue formation, inflammatory infiltration and collagen fibers deposit throughout different phases of the healing process were observed in the CMC hydrogels treated groups. Conclusions The results showed that, in the initial phase of the healing process, the most adequate product was the CMC/HA/Ag association, while in the other phases the CMC/HA association was the best one to promote the healing of burn wounds.


Sujet(s)
Brûlures/traitement médicamenteux , Chitosane , Cicatrisation de plaie , Collagène , Hydrogels
3.
Carbohydr Polym ; 219: 334-343, 2019 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-31151533

RÉSUMÉ

The objective of this work was to investigate the effect of the addition of carboxymethyl chitosan on the structural properties and antilisterial activity of nisin-incorporated chitosan films. Chitosan and carboxymethyl chitosan solutions were prepared with different mass ratios and bacteriocin nisin was added (0, 1000 and 6000 IU/ml). Filmogenic solutions were cast, dried and their physico-chemical and antimicrobial properties were investigated. For the same chitosan/carboxymethyl chitosan mass ratio, the addition of NIS at 6000 IU/ml led to changes in the macro- and microstructure, as well as in physico-chemical properties of films. On the other hand, carboxymethyl chitosan had a plasticizing effect and enhanced the distribution of the bacteriocin within the biopolymer matrix. Moreover, nisin-incorporated blend films of chitosan and carboxymethyl chitosan were more effective against Listeria monocytogenes than their pure chitosan counterparts. This study showed that different formulations of nisin-incorporated composite films of chitosan and carboxymethyl chitosan may provide options for developing bioactive packaging to improve food safety.


Sujet(s)
Antibactériens , Chitosane/analogues et dérivés , Conservateurs alimentaires , Listeria monocytogenes/effets des médicaments et des substances chimiques , Nisine , Antibactériens/composition chimique , Antibactériens/pharmacologie , Chitosane/composition chimique , Chitosane/pharmacologie , Microbiologie alimentaire , Emballage alimentaire , Conservation aliments , Conservateurs alimentaires/composition chimique , Conservateurs alimentaires/pharmacologie , Nisine/composition chimique , Nisine/pharmacologie
4.
São Paulo; s.n; s.n; 2018. 177 p. tab, graf, ilus.
Thèse de Anglais | LILACS | ID: biblio-1361779

RÉSUMÉ

Chitosan is a biocompatible and biodegradable mucoadhesive polymer with unique advantages, such as the distinct trait of opening the junctions to allow paracellular transport of antigen and good tolerability. However, the poor solubility of chitosan in neutral or alkalinized media has restricted its applications in the pharmaceutical field. Chitosan can be easily carboxymethylated to improve its solubility in aqueous media, while its biodegradability and biocompatibility are preserved. Apart from this, carboxymethyl chitosan (CMCS) can be easily processed into nanoparticles which highlight its suitability and extensive usage for preparing different drug delivery formulations. The present study deals with the development and characterization of a delivery system based on CMCS nanoparticles using ovalbumin as model protein. We demonstrated that ovalbumin loaded nanoparticles were successfully synthetized using calcium chloride as a cross-linker by ionic gelation. The nanoparticles exhibited an average size of approximately 169 nm and presented a pseudo-spherical shape. The nanoparticles size increased according to the addition of CaCl2 due to the strong electrostatic attraction. During storage the nanoparticles size increased was attributed to swelling and aggregation. The loading efficiency of ovalbumin was found to be 17%. Confocal microscopy clearly showed the association between ovalbumin and CMCS chains into nanoparticles. Therefore, we suggest these nanoparticles can be considered as an attractive and promising carrier candidate for proteins and antigens. The major challenge that limits the use of such carriers is their instability in an aqueous medium. Thus, the next step of this work was to determine the robustness of several formulations using distinct freeze-drying protocols. This study demonstrated that mannitol in concentration of 10% (w/v) is well suited to preserve ovalbumin loaded CMCS nanocapsules from aggregation during lyophilization and subsequent reconstitution. Importantly, the results showed that an annealing step has a huge impact on porosity of freeze-dried cake by nearly complete crystallization of mannitol, once the crystalline matrix prevents the partial collapse and the formation of larger pores observed without annealing. Therefore, the usual observation that annealing increases the pore size due to growth of ice crystal size does not always apply, at least when crystallization of solute is involved. Since all characterizations and stability studies had been performed, the main purpose of this study was to develop a stable antigen delivery system for oral immunization using CMCS and inactivated rabies virus (RV) as the antigen. RV loaded nanoparticles was found to enhance both systemic (IgG) and local (IgA) immune responses against RV after oral delivery in mice. The effective doses 50% were 50-times higher than the negative controls, indicating that the immune response started only after the third boosting dose. Furthermore, enough neutralizing antibodies was produced to be protected against the harmful effects of the rabies virus. It is therefore concluded, that the CMCS nanoparticles formulated in this study, are suitable for oral vaccine delivery, and can be suggested as a promising delivery system for a diverse range of antigens as well as a gene/protein delivery system, especially for those positively charged. Since several approaches show that effective intervention in airway allergic inflammation can be achieved with allergen-activated interleukin-10-secreting cells, the final part of this work was dedicated to assessing whether IL-10 loaded chitosan nanoparticles (IL10-CSNPs) could be used as a possible inhalable therapeutic tool for preventing exacerbations in asthmatic patients. As positive controls, we also assess whether interleukin 17A and interleukin 9 have the ability to stimulate human airway smooth muscle (HASM) cell contractility using magnetic twisting cytometry (MTC). Significant decreased baseline cell stiffness was observed in HASM cells pre-treated with IL-10, but not with IL10-CSNPs, whereas treatment with IL-17A significantly enhanced baseline cell stiffening. Our findings reveal a previously unknown mechanism underlying immunotherapy for prevention and treatment of asthma


A quitosana é um polímero mucoadesivo biocompatível e biodegradável, com vantagens únicas, tais como a característica distinta de abrir as junções que permitim o transporte paracelular de antígenos e boa tolerabilidade. No entanto, sua baixa solubilidade em meios neutros ou alcalinizados tem restringido suas aplicações no campo farmacêutico. A quitosana pode ser facilmente carboximetilada para melhorar de sua solubilidade em meios aquosos, enquanto sua biodegradabilidade e biocompatibilidade são preservadas. Além disso, a carboximetilquitosana (CMCS) pode ser facilmente processada na forma de nanopartículas, o que destaca sua adequabilidade para uso extensivo no preparo de sistemas de delivery de medicamentos. O presente estudo trata do desenvolvimento e caracterização de um sistema de delivery baseado em nanopartículas de CMCS utilizando ovalbumina como proteína modelo. Nós demonstramos que as nanopartículas carregadas com ovalbumina foram sintetizadas com sucesso utilizando cloreto de cálcio como agente de reticulação por gelificação iônica. As nanopartículas exibiram um tamanho médio de aproximadamente 169 nm e apresentaram uma forma pseudo-esférica. O tamanho das nanopartículas aumentou de acordo com a adição de CaCl2 devido à forte atração eletrostática. Durante o armazenamento, o tamanho aumentado das nanopartículas foi atribuído a incorporação de água e agregação. A eficiência de encapsulamento da ovalbumina foi de aproximadamente 17%. A microscopia confocal mostrou claramente a associação entre ovalbumina e a cadeias de CMCS nas nanopartículas. Sugerimos, portanto, que tal sistema pode ser considerado como candidato atraente e promissor para o carreamento de proteínas e antígenos. O principal desafio que limita o uso desses carreadores consiste na instabilidade em meio aquoso. Assim, o próximo passo deste trabalho foi determinar a robustez de várias formulações utilizandose diferentes protocolos de liofilização. Este estudo demonstrou que o manitol em uma concentração de 10% (p/v) é adequado para preservar da agregação as nanocápsulas de CMCS carregadas com ovalbumina durante a liofilização e subsequente reconstituição. Mais importante, os resultados mostraram que uma etapa de annealing tem um enorme impacto sobre a porosidade da amostra liofilizada devido a quase completa cristalização do manitol, uma vez que a matriz cristalina evita o colapso parcial e a formação de poros maiores observados na ausência do annealing. Portanto, a observação comum de que o annealing aumenta o tamanho doporos devido ao crescimento dos cristais de gelo nem sempre se aplica, pelo menos quando a cristalização de um soluto está envolvida. Uma vez que todas as caracterizações e estudos de estabilidade foram realizados, o principal objetivo deste estudo foi desenvolver um sistema estável de delivery de antígeno para imunização oral utilizando CMCS e vírus rábico inativado (RV) como antígeno. Verificou-se que as nanopartículas carregadas com RV aumentam as respostas imune sistêmica (IgG) e local (IgA) contra o RV após administração oral em camundongos. As doses efetivas 50% foram 50 vezes maiores que os controles negativos, indicando que a resposta imune foi iniciada apenas após a terceira dose da vacina. Além disso, foram produzidos anticorpos neutralizantes suficientes para proteção contra os efeitos nocivos do vírus rábico. Conclui-se, portanto, que as nanopartículas de CMCS formuladas neste estudo, são adequadas para o delivery oral de vacinas, e podem ser sugeridas como um sistema promissor de delivery para uma gama diversa de antígenos, bem como para o delivery de genes/proteínas, especialmente para aqueles carregados positivamente. Uma vez que diversas abordagens mostram que uma intervenção efetiva em casos de inflamação alérgica de vias aéreas pode ser conseguida por meio de células secretoras de interleucina 10 (IL-10) mediante ativação por alergenos, a parte final deste trabalho esteve dedicada a avaliação de nanopartículas de quitosana carregadas com IL-10 (IL10-CSNPs) como possível ferramenta terapêutica inalável para prevenção de exacerbações em pacientes asmáticos. Como controles positivos, avaliou-se adicionalmente se as interleucinas 17A (IL-17A) e 9 (IL-9) possuem a capacidade de estimular a contratilidade de células humanas de músculo liso de vias aéreas humanas (HASM) por meio de citometria de torção magnética (MTC). Uma diminuição significativa da rigidez celular basal foi observada em células HASM pré-tratadas com IL-10, mas não com IL10-CSNPs, enquanto que o tratamento com IL-17A aumentou significativamente a magnitude rigidez celular basal. Nossos resultados revelam um mecanismo previamente desconhecido subjacente à imunoterapia para prevenção e tratamento da asma


Sujet(s)
Asthme/anatomopathologie , Techniques in vitro/instrumentation , Préparations pharmaceutiques , Ovalbumine/analyse , Chitosane/analyse , Administration par voie orale , Interleukines/pharmacologie , Microscopie confocale/méthodes , Nanocapsules , Nanoparticules/classification , Lyophilisation/méthodes
5.
Mater Sci Eng C Mater Biol Appl ; 77: 1349-1362, 2017 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-28532012

RÉSUMÉ

Chitin is one of the most abundant natural polymers in the world and is used for the production of chitosan by deacetylation. Chitosan is nontoxic and biodegradable and, therefore, can be used as a biomaterial and for the construction of drug delivery systems. Nevertheless, the poor solubility of chitosan in neutral or alkalinized media has restricted its applications in the pharmaceutical and biomedical fields. Chitosan can be easily carboxymethylated to improve its solubility in aqueous media while its biodegradability and biocompatibility are preserved. Carboxymethyl chitosans show improved solubility in aqueous media, which makes them an attractive alternative source for producing biomaterials and drug delivery systems as well as for designing nanotechnology-based systems. Thus, carboxymethyl chitosan-based materials have a wide applicability and good potential in the development of biomedical nanodevices and controlled release drug formulations. This review summarizes preparations and properties of hydrophilic chitosan-based materials such as nanoparticles, microparticles, tablets, and films as well as procedures related to various practical applications.


Sujet(s)
Systèmes de délivrance de médicaments , Matériaux biocompatibles , Chitine , Chitosane , Préparations à action retardée
6.
Carbohydr Polym ; 146: 455-66, 2016 08 01.
Article de Anglais | MEDLINE | ID: mdl-27112896

RÉSUMÉ

Designed bioengineered nanocomposites are emerging as a novel class of hybrid materials composed of natural aminopolysaccharides and inorganic semiconductors for biomedical and environmental applications. In this study, it is reported for the first time the synthesis and characterization of water-soluble Bi2S3 quantum dots (QDs) functionalized with O-carboxymethyl chitosan (O-CMC) as capping ligands. UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, and photoluminescence spectroscopy were used to characterize these nanohybrids. The results proved the hypothesis that O-CMC acted as a pH-dependent multi-functional ligand by altering the mechanisms of nucleation, growth and stabilization of water-soluble colloidal Bi2S3 nanocrystals under acidic, physiological and alkaline conditions, using an eco-friendly aqueous process at room temperature. Moreover, the O-CMC capping ligand and the relative molar ratios of the precursors in solution effectively controlled the diameters of the Bi2S3 QDs, which ranged from 2.8 to 12.8nm, and that exhibited luminescent properties in visible light.


Sujet(s)
Bismuth/composition chimique , Chitosane/analogues et dérivés , Boîtes quantiques/composition chimique , Sulfures/composition chimique , Chitosane/composition chimique , Diffusion dynamique de la lumière , Microscopie électronique à transmission , Nanoparticules , Analyse spectrale
7.
Mater Sci Eng C Mater Biol Appl ; 59: 265-277, 2016 Feb.
Article de Anglais | MEDLINE | ID: mdl-26652373

RÉSUMÉ

Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (µCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues.


Sujet(s)
Chitosane/composition chimique , Durapatite/composition chimique , Test de matériaux , Membrane artificielle , Nanoparticules/composition chimique , Ostéoblastes/métabolisme , Lignée cellulaire tumorale , Humains , Ostéoblastes/cytologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE