Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.730
Filtrer
1.
J Mol Biol ; 436(22): 168772, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39222679

RÉSUMÉ

The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90ß, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.

2.
Article de Anglais | MEDLINE | ID: mdl-39236288

RÉSUMÉ

Nicotine exposure in the context of smoking or vaping worsens airway function. Although commonly thought to exert effects through the peripheral nervous system, we previously showed airway smooth muscle (ASM) expresses nicotinic acetylcholine receptors (nAChRs), particularly alpha7 subtype (α7nAChR) with functional effects on contractility and metabolism. However, the mechanisms of nAChR regulation and downstream effects in ASM are not fully understood. Using human ASM cells from non-asthmatics vs. mild-moderate asthmatics, we tested the hypothesis that nAChR-specific ER chaperones RIC-3 and TMEM35 promote cell surface localization of α7nAChR with downstream influence on its functionality: effects exacerbated by inflammation. We found that mild-moderate asthma and exposure to pro-inflammatory cytokines relevant to asthma promote chaperone and α7nAChR expression in ASM. Downstream, ER stress was linked to nicotine/α7nAChR signaling, where RIC-3 and TMEM35 regulate nicotine-induced ER stress, Ca2+ regulation and ASM cell proliferation. Overall, our data highlights the importance α7nAChR chaperones in mediating and modulating nicotine effects in ASM towards airway contractility and remodeling.

3.
Mol Genet Metab ; 143(1-2): 108567, 2024 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-39236565

RÉSUMÉ

While the identification and diagnosis of congenital disorders of glycosylation (CDG) have rapidly progressed, the available treatment options are still quite limited. Mostly, we are only able to manage the disease symptoms rather than to address the underlying cause. However, recent years have brought about remarkable advances in treatment approaches for some CDG. Innovative therapies, targeting both the root cause and resulting manifestations, have transitioned from the research stage to practical application. The present paper aims to provide a detailed overview of these exciting developments and the rising concepts that are used to treat these ultra-rare diseases.

4.
Article de Anglais | MEDLINE | ID: mdl-39237030

RÉSUMÉ

Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of endoplasmic reticulum (ER) stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients each groups. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1 (PDI1), protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic non-obstructive azoospermia and a control group of non-infertile males. Serum PDIA1 (p=0.0004), MANF (p=0.018), PDIA3 (p<0.0001), GRP78 (p=0.0027), CRT (p=0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions including azoospermia.

5.
Sci Rep ; 14(1): 20867, 2024 09 06.
Article de Anglais | MEDLINE | ID: mdl-39242711

RÉSUMÉ

Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.


Sujet(s)
Protéines de Drosophila , Protéines du choc thermique HSP40 , Protéine huntingtine , Maladie de Huntington , Maladie de Huntington/génétique , Maladie de Huntington/métabolisme , Maladie de Huntington/anatomopathologie , Animaux , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Protéine huntingtine/génétique , Protéine huntingtine/métabolisme , Modèles animaux de maladie humaine , Animal génétiquement modifié , Agrégats de protéines , Agrégation pathologique de protéines/génétique , Drosophila melanogaster , Humains , Drosophila
6.
Glia ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39228066

RÉSUMÉ

DNAJB6 is a suppressor of α-synuclein aggregation in vivo and in vitro. DNAJB6 is strongly expressed in the brain, and its overall protein expression is altered in neurodegenerative conditions such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA). These two diseases are characterized by accumulation of aggregated α-synuclein in neurons and oligodendrocytes, respectively. To further explore this, we employed post-mortem normal human brain material to investigate the regional and cell type specific protein expression of DNAJB6. We found that the DNAJB6 protein is ubiquitously expressed across various regions of the brain. Notably, we demonstrate for the first time that DNAJB6 is present in nearly half (41%-53%) of the oligodendrocyte population and in the majority (68%-80%) of neurons. However, DNAJB6 was only sparsely present in other cell types such as astrocytes and microglia. Given that α-synuclein aggregation in oligodendrocytes is a hallmark of MSA, we investigated DNAJB6 presence in MSA brains compared to control brains. We found no significant difference in the percentage of oligodendrocytes where DNAJB6 was present in MSA brains relative to control brains. In conclusion, our results reveal an expression of the DNAJB6 protein across various regions of the human brain, and that DNAJB6 is almost exclusively present in neurons and oligodendrocytes. Since prior studies have shown that PD and MSA brains have altered levels of DNAJB6 relative to control brains, DNAJB6 may be an interesting target for drug development.

7.
Biochim Biophys Acta Proteins Proteom ; 1872(6): 141043, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39128657

RÉSUMÉ

Canavan disease is caused by mutations in the ASPA gene, leading to diminished catalytic activity of aspartoacylase in the brain. Clinical missense mutations are found throughout the enzyme structure, with many of these mutated enzymes having not only decreased activity but also compromised stability. High-throughput screening of a small molecule library has identified several compounds that significantly increase the thermal stability of the E285A mutant enzyme, the most predominant clinical mutation in Canavan disease, while having a negligible effect on the native enzyme. Based on the initial successes, some structural analogs of these initial hits were selected for further examination. Glutathione, NAAG and patulin were each confirmed to be competitive inhibitors, indicating the binding of these compounds at the dimer interface or near the active site of the E285A enzyme. The experimental results were theoretically examined with the help of the docking analysis method. The structure activity-guided optimization of these compounds can potentially lead to potential pharmacological chaperones that could alleviate the detrimental effect of ASPA mutations in Canavan patients.

8.
Ter Arkh ; 96(6): 635-640, 2024 Jul 07.
Article de Russe | MEDLINE | ID: mdl-39106506

RÉSUMÉ

In the history of amyloidosis studying the concept of liquids dyscrasia has been predominated and finally it is resulted in accepting a serum protein-precursor as a leading amyloidogenic factor in the disease pathogenesis. Consequently basic diagnostic and treatment strategy was aimed to find and eliminate this protein from the blood and this approach evidenced high effectiveness in most frequent AA and AL-amyloidosis characterized with anomaly high levels of precursors in the blood. At the same time there are less frequent and slower progressing inheritant forms of systemic amyloidosis including transthyretin induced, which are less depending on amyloidogenecity of amyloid precursor and because of that, in example, the effectiveness of transthyretin stabilizers or blockers of its synthesis is limited comparing with the precursor elimination in AA or AL. Developed in the middle of XX century a theory of local synthesis by macrophages is more preferable to describe the pathogenesis of these forms. And modern proteome analysis using give rise to confirm the key meaning of macrophage in the amyloidogenesis and proves necessity to know deeply mechanisms of macrophagial autophagia - basic tool of maintaining intracellular protein homeostasis. That is why it is difficult to hope on high effectiveness of chemical amyloid solvents in vivo, which being under macrophages regulation never could realize its chemical activities.


Sujet(s)
Amyloïdose , Humains , Amyloïdose/diagnostic , Amyloïdose/histoire , Amyloïdose/métabolisme , Histoire du 20ème siècle , Histoire du 21ème siècle , Histoire du 19ème siècle
9.
Inn Med (Heidelb) ; 2024 Aug 06.
Article de Allemand | MEDLINE | ID: mdl-39105759

RÉSUMÉ

Fabry's disease is a rare X chromosome-linked inherited lysosomal storage disease characterized by insufficient metabolism of the substrate globotriaosylceramide (Gb3) due to reduced alpha-galactosidase A (AGAL) activity. Lysosomal Gb3 accumulation causes a multisystemic disease which, if untreated, reduces the life expectancy in females and males by around 10 and 20 years, respectively, due to progressive renal dysfunction, hypertrophic cardiomyopathy, cardiac arrhythmia and early occurrence of cerebral infarction. The diagnosis is confirmed by determining the reduced AGAL activity in leukocytes in males and molecular genetic detection of a -mutation causing the disease in females. The treatment comprises enzyme replacement therapy (ERT), agalsidase alfa, 0.2 mg/kg body weight (BW), agalsidase beta 1.0 mg/kg BW or pegunigalsidase alfa 1.0 mg/kg BW every 2 weeks i.v. or oral chaperone therapy (one capsule of migalastat 123 mg every other day) in the presence of amenable mutations. This article summarizes the data on the treatment of Fabry's disease and on complications in practice. The current guideline recommendations are addressed and new study results that could expand the therapeutic repertoire in the future are discussed.

10.
Mol Genet Metab ; 143(1-2): 108556, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39116528

RÉSUMÉ

RATIONALE: Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity. Our review explores high-dose ambroxol's therapeutic potential, both preclinical and clinical, in GD2 and GD3. METHODS: PubMed was searched for studies published before March 2023, including clinical, animal, and in vitro studies focusing on the effect of high-dose ambroxol in GD2 and GD3. A narrative synthesis was performed. RESULTS: Nine in vitro, three animal, and eight clinical studies were included, demonstrating varied responses to ambroxol across diverse outcome measures. In vitro and animal studies demonstrated reduced endoplasmatic reticulum stress due to the relocation of GCase from the ER to the lysosomes. In vitro cell lines exhibited varying degrees of increased GCase activity. Clinical trials observed reduced lyso-GL1 levels in plasma (41-89%) and cerebrospinal fluid (CSF) (26-97%), alongside increased GCase activity in GD3 patients. Ambroxol exhibited varying effects on neurological outcomes and development. No severe adverse events were reported. CONCLUSION: High-dose ambroxol shows promise in managing neurological manifestations in GD3, albeit with uncertainties resulting from genetic heterogeneity and variable response. Further clinical trials, are essential for elucidating dosage-response relationships and refining treatment outcomes and strategies for neuronopathic GD.

11.
Curr Biol ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39181128

RÉSUMÉ

Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA). However, molecular details of the force-dependent regulation of BAG3 have remained elusive so far. Here, we demonstrate that mechanical stress triggers the dephosphorylation of BAG3 in human muscle and in isolated cells. We identify force-regulated phospho-switches in BAG3 that control CASA complex assembly and CASA activity. Differential proteomics reveal RAB GTPases, which organize membrane traffic and fusion, as dephosphorylation-dependent interactors of BAG3. In fact, RAB7A and RAB11B are shown here to be essential for CASA in skeletal muscle cells. Moreover, BAG3 dephosphorylation is also observed upon induction of mitophagy, suggesting an involvement of the cochaperone in the RAB7A-dependent autophagic engulfment of damaged mitochondria in exercised muscle. Cooperation of BAG3 with RAB7A relies on a direct interaction of both proteins, which is regulated by the nucleotide state of the GTPase and by association with the autophagosome membrane protein LC3B. Finally, we provide evidence that BAG3 and RAB7A also cooperate in non-muscle cells and propose that overactivation of CASA in RAB7A-L129F patients contributes to the loss of peripheral neurons in Charcot-Marie-Tooth neuropathy.

12.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119824, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39168412

RÉSUMÉ

Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.

13.
Cell Stress Chaperones ; 29(5): 642-653, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39181529

RÉSUMÉ

Targeting the heat shock protein-90 (Hsp90) chaperone machinery in various cancers with 200 monotherapy or combined-therapy clinical trials since 1999 has not yielded any success of food and drug administration approval. Blames for the failures were unanimously directed at the Hsp90 inhibitors or tumors or both. However, analyses of recent cellular and genetic studies together with the Hsp90 data from the Human Protein Atlas database suggest that the vast variations in Hsp90 expression among different organs in patients might have been the actual cause. It is evident now that Hsp90ß is the root of dose-limiting toxicity (DLT), whereas Hsp90α is a buffer of penetrated Hsp90 inhibitors. The more Hsp90α, the safer Hsp90ß, and the lower DLT are for the host. Unfortunately, the dramatic variations of Hsp90, from total absence in the eye, muscle, pancreas, and heart to abundance in reproduction organs, lung, liver, and gastrointestinal track, would cause the selection of any fair toxicity biomarker and an effective maximum tolerable dose (MTD) of Hsp90 inhibitor extremely challenging. In theory, a safe MTD for the organs with high Hsp90 could harm the organs with low Hsp90. In reverse, a safe MTD for organs with low or undetectable Hsp90 would have little impact on the tumors, whose cells exhibit average 3-7% Hsp90 over the average 2-3% Hsp90 in normal cells. Moreover, not all tumor cell lines tested follow the "inhibitor binding-client protein degradation" paradigm. It is likely why the oral Hsp90 inhibitor TAS-16 (Pimitespib), which bypasses blood circulation and other organs, showed some beneficiary efficacy by conveniently hitting tumors along the gastrointestinal track. The critical question is what the next step will be for the Hsp90 chaperone as a cancer therapeutic target.

14.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39201578

RÉSUMÉ

Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.


Sujet(s)
Domaine catalytique , Escherichia coli , Protein-Serine-Threonine Kinases , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/composition chimique , Humains , Escherichia coli/métabolisme , Escherichia coli/génétique , Biosynthèse des protéines , Agrégats de protéines , Syndromes épileptiques/métabolisme , Syndromes épileptiques/génétique , Maturation post-traductionnelle des protéines , Protéines recombinantes/métabolisme , Protéines recombinantes/génétique , Spasmes infantiles
15.
Epigenetics Chromatin ; 17(1): 27, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39192292

RÉSUMÉ

BACKGROUND: Human hexokinase 2 (HK2) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2-driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of histones and nucleic acids modifications in cells, we hypothesized that altering HK2 expression could impact the epigenome and, consequently, chromatin stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 (HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2-dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability. RESULTS: By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ, hxk2Δ, or double-loss of hxk1Δ hxk2Δ to wild-type cells, we firstly confirmed that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a clinical glycolysis inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability. CONCLUSION: Our findings suggest that in yeast cells lacking HXK2, alternative HXKs such as HXK1 or glucokinase 1 (GLK1) play a role in supporting glycolysis at a level that adequately maintains epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur dependent on non-glycolytic function of Hxk2. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.


Sujet(s)
Chromatine , Épigenèse génétique , Hexokinase , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Hexokinase/métabolisme , Hexokinase/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Chromatine/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Nucléosomes/métabolisme , Régulation de l'expression des gènes fongiques
16.
Chemosphere ; 363: 142987, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39094706

RÉSUMÉ

Fine particulate matter (PM2.5) is an air pollutant that enhances susceptibility to cardiovascular diseases. Macrophages are the first immune cells to encounter the inhaled particles and orchestrate an inflammatory response. Given their role in atherosclerosis development, we investigated whether aqueous PM2.5 could elicit atherogenic effects by polarising macrophages to a pro-oxidative and pro-inflammatory phenotype and enhancing foam cell formation. The RAW264.7 macrophage cell line was exposed to PM2.5 for 48 h, with PBS as the control. Aqueous PM2.5 induced apoptosis and reduced cell proliferation. In surviving cells, we observed morphological, phagocytic, oxidative, and inflammatory features (i.e. enhanced iNOS, Integrin-1ß, IL-6 expression), indicative of classical macrophage activation. We also detected an increase in total and surface HSP70 levels, suggesting macrophage activation. Further, exposure of high-cholesterol diet-fed mice to PM2.5 resulted in aortic wall enlargement, indicating vascular lesions. Macrophages exposed to PM2.5 and non-modified low-density lipoprotein (LDL) showed exacerbated lipid accumulation. Given the non-oxidised LDL used and the evidence linking inflammation to disrupted cholesterol negative feedback, we hypothesise that PM2.5-induced inflammation in macrophages enhances their susceptibility to transforming into foam cells. Finally, our results indicate that exposure to aqueous PM2.5 promotes classical macrophage activation, marked by increased HSP70 expression and that it potentially contributes to atherosclerosis.


Sujet(s)
Réaction de choc thermique , Macrophages , Matière particulaire , Animaux , Matière particulaire/toxicité , Souris , Cellules RAW 264.7 , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Réaction de choc thermique/effets des médicaments et des substances chimiques , Polluants atmosphériques/toxicité , Athérosclérose , Métabolisme lipidique/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Activation des macrophages/effets des médicaments et des substances chimiques , Inflammation/induit chimiquement , Cellules spumeuses/effets des médicaments et des substances chimiques , Protéines du choc thermique HSP70/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques
17.
J Agric Food Chem ; 72(36): 19985-19993, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39207302

RÉSUMÉ

Ovalbumin (OVA) is a high-quality protein for humans. Modifying microorganisms to produce proteins offers a solution to potential food protein shortages. In this study, OVA was expressed in Saccharomyces cerevisiae. Initially, screening signal peptides led to extracellular OVA reaching 3.4 mg/L using the INU1 signal peptide. Coexpressing Kar2 and PDI increased OVA production to 5.1 mg/L. Optimizing the expression levels of regulators OPI1, INO2, and INO4 expanded the endoplasmic reticulum membrane, raising yield to 5.5 mg/L. Combining both strategies increased OVA production to 6.2 mg/L, 82% higher than control. This strategy also enhanced secretion of other proteins. Finally, fed-batch fermentation in a 3-L bioreactor significantly boosted OVA production to 116.3 mg/L. This study provides insights for the heterologous synthesis of other high-quality proteins for future food applications.


Sujet(s)
Réticulum endoplasmique , Ovalbumine , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Réticulum endoplasmique/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Ovalbumine/métabolisme , Fermentation , Animaux , Protéines recombinantes/métabolisme , Protéines recombinantes/génétique
18.
J Neurochem ; 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39180255

RÉSUMÉ

Chaperones safeguard protein homeostasis by promoting folding and preventing aggregation. HSP110 is a cytosolic chaperone that functions as a nucleotide exchange factor for the HSP70 cycle. Together with HSP70 and a J-domain protein (JDP), HSP110 maintains protein folding and resolubilizes aggregates. Interestingly, HSP110 is vital for the HSP70/110/JDP-mediated disaggregation of amyloidogenic proteins implicated in neurodegenerative diseases (i.e., α-synuclein, HTT, and tau). However, despite its abundance, HSP110 remains still an enigmatic chaperone, and its functional spectrum is not very well understood. Of note, the disaggregation activity of neurodegenerative disease-associated amyloid fibrils showed both beneficial and detrimental outcomes in vivo. To gain a more comprehensive understanding of the chaperone HSP110 in vivo, we analyzed its role in neuronal proteostasis and neurodegeneration in C. elegans. Specifically, we investigated the role of HSP110 in the regulation of amyloid beta peptide (Aß) aggregation using an established Aß-C. elegans model that mimics Alzheimer's disease pathology. We generated a novel C. elegans model that over-expresses hsp-110 pan-neuronally, and we also depleted hsp-110 by RNAi-mediated knockdown. We assessed Aß aggregation in vivo and in situ by fluorescence lifetime imaging. We found that hsp-110 over-expression exacerbated Aß aggregation and appeared to reduce the conformational variability of the Aß aggregates, whereas hsp-110 depletion reduced aggregation more significantly in the IL2 neurons, which marked the onset of Aß aggregation. HSP-110 also plays a central role in growth and fertility as its over-expression compromises nematode physiology. In addition, we found that HSP-110 modulation affects the autophagy pathway. While hsp-110 over-expression impairs the autophagic flux, a depletion enhances it. Thus, HSP-110 regulates multiple nodes of the proteostasis network to control amyloid protein aggregation, disaggregation, and autophagic clearance.

19.
Cell Commun Signal ; 22(1): 421, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39215343

RÉSUMÉ

The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as ß-amyloid (Aß), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.


Sujet(s)
Maladies neurodégénératives , Pliage des protéines , Humains , Maladies neurodégénératives/métabolisme , Animaux , Agrégats de protéines , Réponse aux protéines mal repliées , Agrégation pathologique de protéines/métabolisme , Réticulum endoplasmique/métabolisme , Chaperons moléculaires/métabolisme
20.
J Recept Signal Transduct Res ; : 1-13, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39189140

RÉSUMÉ

Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE