Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 661
Filtrer
1.
Int J Biol Macromol ; : 133583, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38960266

RÉSUMÉ

Chemodynamic therapy (CDT), an approach that eradicates tumor cells through the catalysis of hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH), possesses distinct advantages in tumor specificity and minimal side effects. However, CDT's therapeutic efficacy is currently hampered by the low production efficiency of ·OH. To address this limitation, this study introduces a water-soluble chitosan-coated W-doped MoOx (WMoOx/CS) designed for the combined application of photothermal therapy (PTT) combined with CDT. The W-doped MoOx (WMoOx) was synthesized in one step by the hydrothermal method, and its surface was modified by water-soluble chitosan (carboxylated chitosan, CS) to enhance its biocompatibility. WMoOx boasts a high near-infrared photothermal conversion efficiency of 52.66 %, efficiently transducing near-infrared radiation into heat. Moreover, the Mo4+/Mo5+ and W5+ ions in WMoOx catalyze H2O2 to produce ·OH for CDT, and the Mo5+/Mo6+ and W6+ ions in WMoOx reduce intracellular glutathione levels and prevent the scavenging of ·OH by glutathione. Crucially, the combination of WMoOx/CS and near-infrared light irradiation demonstrates promising synergistic antitumor effects in both in vitro and in vivo models, highlighting its potential for the combined application of PTT and CDT.

2.
Int J Biol Macromol ; 275(Pt 2): 133595, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38960253

RÉSUMÉ

Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.

3.
Bioorg Chem ; 150: 107593, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38971093

RÉSUMÉ

Nitric oxide (NO) and reactive oxygen species (ROS) embody excellent potential in cancer therapy. However, as a small molecule, their targeted delivery and precise, controllable release are urgently needed to achieve accurate cancer therapy. In this paper, a novel US-responsive bifunctional molecule (SD) and hyaluronic acid-modified MnO2 nanocarrier was developed, and a US-responsive NO and ROS controlled released nanoplatform was constructed. US can trigger SD to release ROS and NO simultaneously at the tumor site. Thus, SD served as acoustic sensitizer for sonodynamic therapy and NO donor for gas therapy. In the tumor microenvironment, the MnO2 nanocarrier can effectively deplete the highly expressed GSH, and the released Mn2+ can make H2O2 to produce .OH by Fenton-like reaction, which exhibited a strong chemodynamic effect. The high concentration of ROS and NO in cancer cell can induce cancer cell apoptosis ultimately. In addition, toxic ONOO-, which was generated by the reaction of NO and ROS, can effectively cause mitochondrial dysfunction, which induced the apoptosis of tumor cells. The 131I was labeled on the nanoplatform, which exhibited internal radiation therapy for tumor therapy. In -vitro and -vivo experiments showed that the nanoplatform has enhanced biocompatibility, and efficient anti-tumor potential, and it achieves synergistic sonodynamic/NO/chemodynamic/radionuclide therapy for cancer.

4.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Article de Anglais | MEDLINE | ID: mdl-38963544

RÉSUMÉ

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Sujet(s)
Cuivre , Doxorubicine , Glucose oxidase , Acide hyaluronique , Réseaux organométalliques , Microenvironnement tumoral , Zéolites , Cuivre/composition chimique , Doxorubicine/pharmacologie , Doxorubicine/composition chimique , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Glucose oxidase/composition chimique , Glucose oxidase/métabolisme , Humains , Zéolites/composition chimique , Animaux , Réseaux organométalliques/composition chimique , Acide hyaluronique/composition chimique , Peroxyde d'hydrogène/composition chimique , Peroxyde d'hydrogène/métabolisme , Lignée cellulaire tumorale , Souris , Antibiotiques antinéoplasiques/pharmacologie , Antibiotiques antinéoplasiques/composition chimique , Tumeurs/traitement médicamenteux , Vecteurs de médicaments/composition chimique , Systèmes de délivrance de médicaments , Libération de médicament , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Imidazoles
5.
ACS Appl Bio Mater ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38968606

RÉSUMÉ

Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.

6.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38986331

RÉSUMÉ

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

7.
Int J Pharm ; 661: 124426, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38972519

RÉSUMÉ

In recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study. Achieving a synergistic effect by combining starvation therapy, chemodynamic therapy, and chemotherapy for the treatment of ovarian cancer was the ultimate goal of this system. This nanotechnology-based drug delivery system (NDDS) introduced arsenic-manganese complexes into cancer cells, leading to the subsequent release of lethal arsenic ions (As3+) and manganese ions (Mn2+). The acidic microenvironment of the tumor facilitated this process, and MR imaging offered real-time monitoring of the ATO dose distribution. Simultaneously, to produce reactive oxygen species that induced cell death through a Fenton-like reaction, Mn2+ exploited the surplus of hydrogen peroxide (H2O2) within tumor cells. Glucose oxidase-based starvation therapy further supported this mechanism, which restored H2O2 and lowered the cellular acidity. Consequently, this approach achieved self-enhanced chemodynamic therapy. Homologous targeting of the NPs was facilitated through the use of SKOV3 cell membranes that encapsulated the NPs. Hence, the use of a multimodal NDDS that integrated ATO delivery, therapy, and monitoring exhibited superior efficacy and biocompatibility compared with the nonspecific administration of ATO. This approach presents a novel concept for the diagnosis and treatment of ovarian cancer.

8.
Asian J Pharm Sci ; 19(3): 100912, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38903128

RÉSUMÉ

Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.

9.
J Colloid Interface Sci ; 674: 9-18, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38908062

RÉSUMÉ

Disulfiram (DSF) metabolites exhibit antitumor properties when bound to Cu2+. This combination also promotes the generation of reactive oxygen species (ROS), ultimately leading to tumor cell death. In this study, CuO2 served as a carrier for DSF, forming a dual-drug delivery system with Cu2+ and DSF encapsulated in polydopamine (PDA). In the final delivery system, CuO2 (DSF-CuO2@PDA) was hydrolyzed at the tumor site, releasing both Cu2+ and H2O2. Cu2+ reacts with DSF metabolites to form Bis(diethyldithiocarbamate)-Cu (CuET), which triggers a Fenton-like reaction that generates ROS. Chemotherapy and chemodynamic therapy exhibited significant tumor-suppressive capabilities, with an inhibition rate of 61 %. In addition, the DSF-CuO2@PDA complex demonstrated superlative tumor-targeting ability and biocompatibility.

10.
Bioact Mater ; 39: 544-561, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38883314

RÉSUMÉ

Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.

11.
Molecules ; 29(11)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38893373

RÉSUMÉ

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Sujet(s)
Antinéoplasiques , Ferroptose , Nanomédecine , Humains , Ferroptose/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Nanomédecine/méthodes , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Nanoparticules/composition chimique , Composés du fer III/composition chimique , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/composition chimique , Peroxyde d'hydrogène/pharmacologie , Survie cellulaire/effets des médicaments et des substances chimiques , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie
12.
Adv Healthc Mater ; : e2400943, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38856967

RÉSUMÉ

Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.

13.
Materials (Basel) ; 17(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38930266

RÉSUMÉ

Transition metal oxide (TMO)-based nanozymes have appeared as hopeful tools for antitumor applications due to their unique catalytic properties and ability to modulate the tumor microenvironment (TME). The purpose of this review is to provide an overview of the latest progress made in the field of TMO-based nanozymes, focusing on their enzymatic activities and participating metal ions. These nanozymes exhibit catalase (CAT)-, peroxidase (POD)-, superoxide dismutase (SOD)-, oxidase (OXD)-, and glutathione oxidase (GSH-OXD)-like activities, enabling them to regulate reactive oxygen species (ROS) levels and glutathione (GSH) concentrations within the TME. Widely studied transition metals in TMO-based nanozymes include Fe, Mn, Cu, Ce, and the hybrid multimetallic oxides, which are also summarized. The review highlights several innovative nanozyme designs and their multifunctional capabilities. Despite the significant progress in TMO-based nanozymes, challenges such as long-term biosafety, targeting precision, catalytic mechanisms, and theoretical supports remain to be addressed, and these are also discussed. This review contributes to the summary and understanding of the rapid development of TMO-based nanozymes, which holds great promise for advancing nanomedicine and improving cancer treatment.

14.
Biomaterials ; 311: 122675, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38943822

RÉSUMÉ

Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.

15.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38931479

RÉSUMÉ

Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.

16.
Int J Biol Macromol ; 275(Pt 1): 133428, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38936576

RÉSUMÉ

We present a hyaluronic acid (HA)-based nanoplatform (CMGH) integrating starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for targeted cancer treatment. CMGH fabrication involved the encapsulation of glucose oxidase (GOx) within a copper-based metal-organic framework (CM) followed by surface modification with HA. CMGH exerts its antitumor effects by catalyzing glucose depletion at tumor sites, leading to tumor cell starvation and the concomitant generation of glucuronic acid and H2O2. The decreased pH and elevated H2O2 promote the Fenton-like reaction of Cu ions, leading to hydroxyl radical production. HA modification enables targeted accumulation of CMGH at tumor sites via the CD44 receptor. Under near-infrared light irradiation, CM exhibits photothermal conversion capability, enhancing the antitumor effects of CMGH. In vitro and in vivo studies demonstrate the effective inhibition of tumor growth by CMGH. This study highlights the potential of CMGH as a targeted cancer therapeutic platform.

17.
Exploration (Beijing) ; 4(2): 20230087, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38855616

RÉSUMÉ

The emergence of drug-resistant bacteria poses a significant threat to people's lives and health as bacterial infections continue to persist. Currently, antibiotic therapy remains the primary approach for tackling bacterial infections. However, the escalating rates of drug resistance coupled with the lag in the development of novel drugs have led to diminishing effectiveness of conventional treatments. Therefore, the development of nonantibiotic-dependent therapeutic strategies has become imperative to impede the rise of bacterial resistance. The emergence of chemodynamic therapy (CDT) has opened up a new possibility due to the CDT can convert H2O2 into •OH via Fenton/Fenton-like reaction for drug-resistant bacterial treatment. However, the efficacy of CDT is limited by a variety of practical factors. To overcome this limitation, the sterilization efficiency of CDT can be enhanced by introducing the therapeutics with inherent antimicrobial capability. In addition, researchers have explored CDT-based combined therapies to augment its antimicrobial effects and mitigate its potential toxic side effects toward normal tissues. This review examines the research progress of CDT in the antimicrobial field, explores various strategies to enhance CDT efficacy and presents the synergistic effects of CDT in combination with other modalities. And last, the current challenges faced by CDT and the future research directions are discussed.

18.
ACS Nano ; 18(27): 17837-17851, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38938113

RÉSUMÉ

Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.


Sujet(s)
Phosphatase alcaline , Colorants fluorescents , Photothérapie dynamique , Humains , Phosphatase alcaline/métabolisme , Colorants fluorescents/composition chimique , Colorants fluorescents/pharmacologie , Colorants fluorescents/synthèse chimique , Animaux , Imagerie optique , Photosensibilisants/pharmacologie , Photosensibilisants/composition chimique , Photosensibilisants/synthèse chimique , Souris , Lignée cellulaire tumorale , Tumeurs/traitement médicamenteux , Tumeurs/imagerie diagnostique , Tumeurs/anatomopathologie , Souris nude , Tests de criblage d'agents antitumoraux
19.
J Colloid Interface Sci ; 672: 724-735, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-38870763

RÉSUMÉ

The integration of functional nanomaterials with tissue engineering scaffolds has emerged as a promising solution for simultaneously treating malignant bone tumors and repairing resected bone defects. However, achieving a uniform bioactive interface on 3D-printing polymer scaffolds with minimized microstructural heterogeneity remains a challenge. In this study, we report a facile metal-coordination self-assembly strategy for the surface engineering of 3D-printed polycaprolactone (PCL) scaffolds with nanostructured two-dimensional conjugated metal-organic frameworks (cMOFs) consisting of Cu ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). A tunable thickness of Cu-HHTP cMOF on PCL scaffolds was achieved via the alternative deposition of metal ions and HHTP. The resulting composite PCL@Cu-HHTP scaffolds not only demonstrated potent photothermal conversion capability for efficient OS ablation but also promoted the bone repair process by virtue of their cell-friendly hydrophilic interfaces. Therefore, the cMOF-engineered dual-functional 3D-printing scaffolds show promising potential for treating bone tumors by offering sequential anti-tumor effects and bone regeneration capabilities. This work also presents a new avenue for the interface engineering of bioactive scaffolds to meet multifaceted demands in osteosarcoma-related bone defects.


Sujet(s)
Tumeurs osseuses , Régénération osseuse , Ostéosarcome , Polyesters , Impression tridimensionnelle , Structures d'échafaudage tissulaires , Ostéosarcome/anatomopathologie , Ostéosarcome/traitement médicamenteux , Ostéosarcome/thérapie , Régénération osseuse/effets des médicaments et des substances chimiques , Structures d'échafaudage tissulaires/composition chimique , Tumeurs osseuses/anatomopathologie , Tumeurs osseuses/traitement médicamenteux , Tumeurs osseuses/thérapie , Polyesters/composition chimique , Humains , Réseaux organométalliques/composition chimique , Réseaux organométalliques/pharmacologie , Réseaux organométalliques/synthèse chimique , Propriétés de surface , Cuivre/composition chimique , Cuivre/pharmacologie , Hyperthermie provoquée , Ingénierie tissulaire , Taille de particule , Catalyse , Animaux , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Souris , Survie cellulaire/effets des médicaments et des substances chimiques , Nanostructures/composition chimique , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques
20.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Article de Anglais | MEDLINE | ID: mdl-38832334

RÉSUMÉ

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Sujet(s)
Glutathion , Manganèse , Platine , Espèces réactives de l'oxygène , Animaux , Platine/composition chimique , Platine/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Glutathion/composition chimique , Humains , Manganèse/composition chimique , Manganèse/pharmacologie , Thérapie photothermique/méthodes , Souris , Nanoparticules métalliques/composition chimique , Peroxyde d'hydrogène/composition chimique , Lignée cellulaire tumorale , Radical hydroxyle/composition chimique , Antinéoplasiques/composition chimique , Antinéoplasiques/pharmacologie , Fer/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...