Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biomed Pharmacother ; 152: 113270, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35709652

RÉSUMÉ

BACKGROUND: Antibodies against the P3 sequence (Gly1127-Cys1140) of LRP1 (anti-P3 Abs) specifically block cholesteryl ester (CE) accumulation in vascular cells. LRP1 is a key regulator of insulin receptor (InsR) trafficking in different cell types. The link between CE accumulation and the insulin response are largely unknown. Here, the effects of P3 peptide immunization on the alterations induced by a high-fat diet (HFD) in cardiac insulin response were evaluated. METHODS: Irrelevant (IrP)- or P3 peptide-immunized rabbits were randomized into groups fed either HFD or normal chow. Cardiac lipid content was characterized by thin-layer chromatography, confocal microscopy, and electron microscopy. LRP1, InsR and glucose transporter type 4 (GLUT4) levels were determined in membranes and total lysates from rabbit heart. The interaction between InsR and LRP1 was analyzed by immunoprecipitation and confocal microscopy. Insulin signaling activity and glucose uptake were evaluated in HL-1 cells exposed to rabbit serum from the different groups. FINDINGS: HFD reduces cardiac InsR and GLUT4 membrane levels and the interactions between LRP1/InsR. Targeting the P3 sequence on LRP1 through anti-P3 Abs specifically reduces CE accumulation in the heart independently of changes in the circulating lipid profile. This restores InsR and GLUT4 levels in cardiac membranes as well as the LRP1/InsR interactions of HFD-fed rabbits. In addition, anti-P3 Abs restores the insulin signaling cascade and glucose uptake in HL-1 cells exposed to hypercholesterolemic rabbit serum. INTERPRETATION: LRP1-immunotargeting can block CE accumulation within the heart with specificity, selectivity, and efficacy, thereby improving the cardiac insulin response; this has important therapeutic implications for a wide range of cardiac diseases. FUNDING: Fundació MARATÓ TV3: grant 101521-10, Instiuto de Salud Carlos III (ISCIII) and ERDFPI18/01584, Fundación BBVA Ayudas a Equipos de Investigación 2019. SECyT-UNC grants PROYECTOS CONSOLIDAR 2018-2021; FONCyT, Préstamo BID PICT grant 2015-0807 and grant 2017-4497.


Sujet(s)
Cholestérol ester , Insuline , Animaux , Cholestérol ester/métabolisme , Alimentation riche en graisse , Glucose , Insuline/métabolisme , Protéine-1 apparentée au récepteur des LDL/métabolisme , Lapins
2.
Curr Alzheimer Res ; 16(8): 699-709, 2019.
Article de Anglais | MEDLINE | ID: mdl-31441726

RÉSUMÉ

BACKGROUND: Alzheimer´s disease (AD) is a chronic and progressive disease which impacts caregivers, families and societies physically, psychologically and economically. Currently available drugs can only improve cognitive symptoms, have no impact on progression and are not curative, so identifying and studying new drug targets is important. There are evidences which indicate disturbances in cholesterol homeostasis can be related with AD pathology, especially the compartmentation of intracellular cholesterol and cytoplasmic cholesterol esters formed by acyl-CoA: cholesterol acyltransferase 1 (ACAT1) can be implicated in the regulation of amyloid-beta (Aß) peptide, involved in AD. Blocking ACAT1 activity, beneficial effects are obtained, so it has been suggested that ACAT1 can be a potential new therapeutic target. The present review discusses the role of cholesterol homeostasis in AD pathology, especially with ACAT inhibitors, and how they have been raised as a therapeutic approach. In addition, the genetic relationship of ACAT and AD is discussed. CONCLUSION: Although there are several lines of evidence from cell-based and animal studies that suggest that ACAT inhibition is an effective way of reducing cerebral Aß, there is still an information gap in terms of mechanisms and concerns to cover before passing to the next level. Additionally, an area of interest that may be useful in understanding AD to subsequently propose new therapeutic approaches is pharmacogenetics; however, there is still a lot of missing information in this area.


Sujet(s)
Acetyl-coA C-acetyltransferase/génétique , Acetyl-coA C-acetyltransferase/métabolisme , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/thérapie , Acetyl-coA C-acetyltransferase/antagonistes et inhibiteurs , Maladie d'Alzheimer/métabolisme , Animaux , Cholestérol/métabolisme , Humains
3.
Metabolism ; 62(8): 1061-4, 2013 Aug.
Article de Anglais | MEDLINE | ID: mdl-23540443

RÉSUMÉ

OBJECTIVE: In familial hypercholesterolemia (FH), the metabolism and anti-atherogenic functions of HDL can be affected by the continuous interactions with excess LDL amounts. Here, lipid transfers to HDL, an important step for HDL intravascular metabolism and for HDL role in reverse cholesterol transport (RCT) were investigated in FH patients. METHODS: Seventy-one FH patients (39 ± 15 years, LDL-cholesterol=274 ± 101; HDL-cholesterol=50 ± 14 mg/dl) and 66 normolipidemic subjects (NL) (38 ± 11 years, LDL-cholesterol=105 ± 27; HDL-cholesterol=52 ± 12 mg/dl) were studied. In vitro, lipid transfers were evaluated by incubation of plasma samples (37°C, 1h) with a donor lipid nanoemulsion labeled with 3H-triglycerides (TG) and 14C-unesterified cholesterol (UC) or with 3H-cholesteryl ester (EC) and 14C-phospholipids (PL). Radioactivity was counted at the HDL fraction after chemical precipitation of apolipoprotein (apo) B-containing lipoproteins and the nanoemulsion. Data are % of total radioactivity measured in the HDL fraction. RESULTS: Transfer of UC to HDL was lower in FH than in NL (5.6 ± 2.1 vs 6.7 ± 2.0%, p=0.0005) whereas TG (5.5 ± 3.1 vs 3.7 ± 0.9%, p=0.018) and PL (20.9 ± 4.6 vs 18.2 ± 3.7 %, p=0.023) transfers were higher in FH. EC transfer was equal. By multivariate analysis, transfers of all four lipids correlated with HDL-cholesterol and with apo A-I. CONCLUSION: FH elicited marked changes in three of the four tested lipid transfers to HDL. The entry of UC into HDL for subsequent esterification is an important driving force for RCT and reduction of UC transfer to HDL was previously associated to precocious coronary heart disease. Therefore, in FH, HDL functions can be lessened, which can also contribute to atherogenesis.


Sujet(s)
Hyperlipoprotéinémie de type II/métabolisme , Métabolisme lipidique/génétique , Lipoprotéines HDL/métabolisme , Adolescent , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Apolipoprotéines B/métabolisme , Cholestérol/sang , Cholestérol/métabolisme , Cholestérol ester/métabolisme , Femelle , Humains , Hyperlipoprotéinémie de type II/génétique , Lipoprotéines HDL/génétique , Lipoprotéines LDL/génétique , Lipoprotéines LDL/métabolisme , Mâle , Adulte d'âge moyen , Phospholipides/métabolisme , Triglycéride/métabolisme , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE