Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Materials (Basel) ; 17(8)2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38673177

RÉSUMÉ

Lead halide perovskites (LHPs) containing organic parts are emerging optoelectronic materials with a wide range of applications thanks to their high optical absorption, carrier mobility, and easy preparation methods. They possess spin-dependent properties, such as strong spin-orbit coupling (SOC), and are promising for spintronics. The Rashba effect in LHPs can be manipulated by a magnetic field and a polarized light field. Considering the surfaces and interfaces of LHPs, light polarization-dependent optoelectronics of LHPs has attracted attention, especially in terms of spin-dependent photocurrents (SDPs). Currently, there are intense efforts being made in the identification and separation of SDPs and spin-to-charge interconversion in LHP. Here, we provide a comprehensive review of second-order nonlinear photocurrents in LHP in regard to spintronics. First, a detailed background on Rashba SOC and its related effects (including the inverse Rashba-Edelstein effect) is given. Subsequently, nonlinear photo-induced effects leading to SDPs are presented. Then, SDPs due to the photo-induced inverse spin Hall effect and the circular photogalvanic effect, together with photocurrent due to the photon drag effect, are compared. This is followed by the main focus of nonlinear photocurrents in LHPs containing organic parts, starting from fundamentals related to spin-dependent optoelectronics. Finally, we conclude with a brief summary and future prospects.

2.
Article de Anglais | MEDLINE | ID: mdl-38619870

RÉSUMÉ

Valleytronics, identified as electronic properties of the energy band extrema in momentum space, has been intensively revived following the emergence of two-dimensional transition metal dichalcogenides (TMDCs) as their valley information can be controlled and probed through the spin angular momentum of light. Previous optical investigations of valleytronics have been limited to the visible/near-infrared spectral regime through which the carriers of most TMDCs can be excited. Monolayer 1T'-WTe2 with broken time-reversal symmetry provides a fertile platform to study the long-wavelength photonic properties in different valleys. Here, we employed a circularly polarized terahertz (THz) laser to selectively excite the valley of monolayer 1T'-WTe2 and demonstrate that the helicity-dependent photoresponse is generated via the photogalvanic effect (PGE). We also observed that the photocurrent is controlled by circular polarization and the external electric field. Because of the tunable Berry curvature dipole derived from the nontrivial wave functions near the inverted gap edge in monolayer WTe2, the bandgap can be tuned efficiently. Our results provide a versatile venue for controlling, detecting, and processing valleytronics and applications in on-chip THz imaging and quantum information processing.

3.
Proc Natl Acad Sci U S A ; 121(5): e2307425121, 2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-38271339

RÉSUMÉ

We present evidence of a strong circular photon drag effect (PDE) in topological insulators (TIs) through the observation of helicity-dependent topological photocurrents with threefold rotational symmetry using THz spectroscopy in epitaxially-grown Bi2Se3 with reduced crystallographic twinning. We establish how twinned domains introduce competing nonlinear optical (NLO) responses inherent to the crystal structure that obscure geometry-sensitive optical processes through the introduction of a spurious mirror symmetry. Minimizing the twinning defect reveals strong NLO response currents whose magnitude and direction depend on the alignment of the excitation to the crystal axes and follow the threefold rotational symmetry of the crystal. Notably, photocurrents arising from helical light reverse direction for left/right circular polarizations and maintain a strong azimuthal dependence-a result uniquely attributable to the circular PDE, where the photon momentum acts as an applied in-plane field stationary in the laboratory frame. Our results demonstrate new levels of control over the magnitude and direction of photocurrents in TIs and that the study of single-domain films is crucial to reveal hidden phenomena that couple topological order and crystal symmetries.

4.
ACS Nano ; 17(19): 18873-18882, 2023 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-37772489

RÉSUMÉ

Chiral materials have garnered significant attention in the field of condensed matter physics. Nevertheless, the magnetic moment induced by the chiral spatial motion of electrons in helical materials, such as elemental Te and Se, remains inadequately understood. In this work, we investigate the development of quantum angular momentum enforced by chirality by using static and time-dependent density functional theory calculations for an elemental Se chain. Our findings reveal the emergence of an unconventional orbital texture driven by the chiral geometry, giving rise to a nonvanishing current-induced orbital moment. By incorporating spin-orbit coupling, we demonstrate that current-induced spin accumulation arises in the chiral chain, which fundamentally differs from the conventional Edelstein effect. Furthermore, we demonstrate optoelectronic detection of the orbital angular momentum in the chiral Se chain, providing an alternative to the interband Berry curvature, which is ill-defined in low dimensions.

5.
Angew Chem Int Ed Engl ; 62(42): e202309055, 2023 Oct 16.
Article de Anglais | MEDLINE | ID: mdl-37635091

RÉSUMÉ

The origin of the bulk photovoltaic effect (BPVE) was considered as a built-in electric field formed by the macroscopic polarization of materials. Alternatively, the "shift current mechanism" has been gradually accepted as the more appropriate description of the BPVE. This mechanism implies that the photocurrent generated by the BPVE is a topological current featuring an ultrafast response and dissipation-less nature, which is very attractive for photodetector applications. Meanwhile, the origin of the BPVE in organic-inorganic hybrid perovskites (OIHPs) has not been discussed and is still widely accepted as the classical mechanism without any experimental evidence. Herein, we observed the BPVE along the nonpolar axis in OIHPs, which is inconsistent with the classical explanation. Furthermore, based on the nonlinear optical tensor correlation, we substantiated that the BPVE in OIHPs is originated in the shift current mechanism.

6.
ACS Nano ; 17(17): 16633-16643, 2023 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-37458508

RÉSUMÉ

Bismuth oxyselenide (Bi2O2Se) is a two-dimensional (2D) layered semiconductor material with high electron Hall mobility and excellent environmental stability as well as strong spin-orbit interaction (SOI), which has attracted intense attention for application in spintronic and spin optoelectronic devices. However, a comprehensive study of spin photocurrent and its microscopic origin in Bi2O2Se is still missing. Here, the helicity-dependent photocurrent (HDPC) was investigated in Bi2O2Se nanosheets. By analyzing the dependence of HDPC on the angle of incidence, we find that the HDPC originates from surface states with Cs symmetry in Bi2O2Se, which can be attributed to the circular photogalvanic effect (CPGE) and circular photon drag effect (CPDE). It is revealed that the HDPC current almost changes linearly with the source-drain voltage. Furthermore, we demonstrate effective tuning of HDPC in Bi2O2Se by ionic liquid gating, indicating that the spin splitting of the surface electronic structure is effectively tuned. By analyzing the gate voltage dependence of HDPC, we can unambiguously identify the surface polarity and the surface electronic structure of Bi2O2Se. The large HDPC in Bi2O2Se nanosheets and its efficient electrical tuning demonstrate that 2D Bi2O2Se nanosheets may provide a good platform for opto-spintronics devices.

7.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-37446495

RÉSUMÉ

Magnetic element doped Cd3As2 Dirac semimetal has attracted great attention for revealing the novel quantum phenomena and infrared opto-electronic applications. In this work, the circular photogalvanic effect (CPGE) was investigated at various temperatures for the Ni-doped Cd3As2 films which were grown on GaAs(111)B substrate by molecular beam epitaxy. The CPGE current generation was found to originate from the structural symmetry breaking induced by the lattice strain and magnetic doping in the Ni-doped Cd3As2 films, similar to that in the undoped ones. However, the CPGE current generated in the Ni-doped Cd3As2 films was approximately two orders of magnitude smaller than that in the undoped one under the same experimental conditions and exhibited a complex temperature variation. While the CPGE current in the undoped film showed a general increase with rising temperature. The greatly reduced CPGE current generation efficiency and its complex variation with temperature in the Ni-doped Cd3As2 films was discussed to result from the efficient capture of photo-generated carriers by the deep-level magnetic impurity bands and enhanced momentum relaxation caused by additional strong impurity scattering when magnetic dopants were introduced.

8.
Nano Lett ; 23(8): 3599-3606, 2023 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-37057864

RÉSUMÉ

Chirality arises from the asymmetry of materials, where two counterparts are the mirror image of each other. The interaction between circular-polarized light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of 3. Here, we investigate the tunable circular photoelectric responses in 2D Te field-effect transistors with different chirality, including the longitudinal circular photogalvanic effect induced by the radial spin texture (electron-spin polarization parallel to the electron momentum direction) and the circular photovoltaic effect induced by the chiral crystal structure (helical Te atomic chains). Our work demonstrates the controllable manipulation of the chirality degree of freedom in materials.

9.
J Phys Condens Matter ; 33(50)2021 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-34551401

RÉSUMÉ

The circular photogalvanic effect (CPGE) is the only possible quantized signal in chiral Weyl and multifold semimetals with inversion and mirror symmetries broken. Here, we review CPGE in the chiral multifold semimetals in terms of classification of CPGE tensor, the quantization of CPGE fromk⋅peffective model and topological semimetal RhSi family. Firstly, we give complete symmetric analysis of CPGE tensors for all nonmagnetic point groups, and get a table classifying matrix of response tensors. Secondly, the CPGE becomes a quantized response in the noncentrosymmetric topological semimetals, and depends on the Chern number of multifold fermions. Based onk⋅peffective model with linear dispersion, detailed derivations about the quantization of CPGE are given. Finally, according toab initioanalysis for the quantized CPGE based on noninteracting electronic structures, we review previous reports and make new calculations for the chiral topological semimetals in RhSi family, which can be separated into two groups. The first group, including RhSi, PtAl and CoSi, can be the promising candidates to exhibit a quantized CPGE trace, while the second group includes PdGa, PtGa and RhSn without a quantization.

10.
Nano Lett ; 21(11): 4584-4591, 2021 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-34037402

RÉSUMÉ

Recently, a two-dimensional Dion-Jacobson (DJ) perovskite (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) is emerging with remarkable Rashba effect and ferroelectricity. However, the origin of the giant Rashba splitting remains elusive and the current synthetic strategy via slow cooling is time- and power-consuming, hindering its future applications. Here, we report on an economical aqueous method to obtain (AMP)PbI4 crystals and clarify the origin of the giant Rashba effect by temperature- and polarization-dependent photoluminescence (PL) spectroscopy. The strong temperature-dependent PL helicity indicates the thermally assisted structural distortion as the main origin of the Rashba effect, suggesting that valley polarization still preserves at high temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect near the indirect bandgap. Our study not only optimizes the synthetic strategies of this DJ perovskite but also sheds light on its potential applications in room/high-temperature spintronics and valleytronics.

11.
Adv Mater ; 33(17): e2008611, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33754374

RÉSUMÉ

The control of the optoelectronic properties of 2D organic-inorganic hybrid perovskite (2D-OIHP) lead halides is an increasingly prevalent topic. Herein, the observation of the circular photogalvanic effect (CPGE) in new enantiomorphic 2D-OIHP lead iodides is reported, which are synthesized as a first OIHP-related system belonging to a chiral space group by incorporating organic chiral cations into the inorganic layers of lead iodides. The CPGE is an optoelectronic phenomenon associated with the spin-orbit coupling of heavy atoms in noncentrosymmetric systems. Owing to the CPGE, light-helicity-dependent steady photocurrents are generated without an external bias voltage under the irradiation of circularly polarized light. Furthermore, the sign reversal of the CPGE photocurrent depending on the chirality of the designed 2D-OIHP lead iodides is observed. This result indicates formation of the theoretically predicted radial spin-polarized texture in k-space of chiral systems owing to spin-momentum locking. Hence, chiral 2D-OIHP lead halides can be a promising platform for engineering opto-spintronic functionalities.

12.
ACS Nano ; 15(1): 588-595, 2021 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-33241679

RÉSUMÉ

Two-dimensional hybrid organic-inorganic perovskites (2D-HOIPs) that form natural multiple quantum wells have attracted increased research interest due to their interesting physics and potential applications in optoelectronic devices. Recent studies have shown that spintronics applications can also be introduced to 2D-HOIPs upon integrating chiral organic ligands into the organic layers. Here we report spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral 2D-HOIPs, namely, (R-MBA)2PbI4 and (S-MBA)2PbI4. The out-of-plane photocurrent response in vertical photovoltaic devices exhibits ∼10% difference upon right and left circularly polarized light (CPL) excitation, which originates from selective spin transport through the chiral multilayers. In contrast, the in-plane photocurrent response generated by CPL excitation of planar photoconductive devices shows a typical response of chirality-induced circular photogalvanic effect that originates from the Rashba splitting in the electronic bands of these compounds. Our studies may lead to potential applications of chiral 2D-HOIPs in optoelectronic devices that are sensitive to the light helicity.

13.
ACS Appl Mater Interfaces ; 12(15): 18091-18100, 2020 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-32212669

RÉSUMÉ

The circular photogalvanic effect (CPGE) provides a method utilizing circularly polarized light to control spin photocurrent and will also lead to novel opto-spintronic devices. The CPGE of three-dimensional topological insulator Bi2Te3 with different substrates and thicknesses has been systematically investigated. It is found that the CPGE current can be dramatically tuned by adopting different substrates. The CPGE current of the Bi2Te3 films on Si substrates are more than two orders larger than that on SrTiO3 substrates when illuminated by 1064 nm light, which can be attributed to the modulation effect due to the spin injection from Si substrate to Bi2Te3 films, larger light absorption coefficient, and stronger inequivalence between the top and bottom surface states for Bi2Te3 films grown on Si substrates. The excitation power dependence of the CPGE current of Bi2Te3 films on Si substrates shows a saturation at high power especially for thicker samples, whereas that on SrTiO3 substrates almost linearly increases with excitation power. Temperature dependence of the CPGE current of Bi2Te3 films on Si substrates first increases and then decreases with decreasing temperature, whereas that on SrTiO3 substrates changes monotonously with temperature. These interesting phenomena of the CPGE current of Bi2Te3 films on Si substrates are related to the spin injection from Si substrates to Bi2Te3 films. Our work not only intrigues new physics but also provides a method to effectively manipulate the helicity-dependent photocurrent via spin injection.

14.
ACS Nano ; 14(3): 3539-3545, 2020 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-32160456

RÉSUMÉ

The generation and detection of ultrafast spin current, preferably reaching a frequency up to terahertz, is the core of spintronics. Studies have shown that the Weyl semimetal WTe2 is of great potential in generating spin currents. However, the prior studies have been limited to the static measurements with the in-plane spin orientation. In this work, we demonstrate a picosecond spin-photocurrent in a Td-WTe2 thin film via a terahertz time domain spectroscopy with a circularly polarized laser excitation. The anisotropic dependence of the circular photogalvanic effect (CPGE) in the terahertz emission reveals that the picosecond spin-photocurrent is generated along the rotational asymmetry a-axis. Notably, the generated spins are aligned along the out-of-plane direction under the light normally incident to the film surface, which provides an efficient means to manipulate magnetic devices with perpendicular magnetic anisotropy. A spin-splitting band induced by intrinsic inversion symmetry breaking enables the manipulation of a spin current by modulating the helicity of the laser excitation. Moreover, CPGE nearly vanishes at a transition temperature of ∼175 K due to the carrier compensation. Our work provides an insight into the dynamic behavior of the anisotropic spin-photocurrent of Td-WTe2 in terahertz frequencies and shows a great potential for the future development of terahertz-spintronic devices with Weyl semimetals.

15.
ACS Appl Mater Interfaces ; 11(3): 3334-3341, 2019 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-30582322

RÉSUMÉ

In a monolayer transition metal dichalcogenide (TMDC) that lacks structural inversion symmetry, spin degeneracy is lifted by strong spin-orbit coupling, and a distinctive spin-valley locking allows for the creation of valley-locked spin-polarized carriers with a circularly polarized optical excitation. When excited carriers also have net in-plane momentum, spin-polarized photocurrents can be generated at ambient temperature without magnetic fields or materials. The behavior of these spin-polarized photocurrents in monolayer TMDC remains largely unexplored. In this work, we demonstrate the tuning of spin-valley photocurrent generated from the circularly polarized photogalvanic effect in monolayer MoS2, including magnitude and polarization degree, by purely electric means at room temperature. The magnitude of spin-polarized photocurrent can be modulated up to 45 times larger, and the polarization degree of the total photocurrent can be tuned significantly (here from 0.5 to 16.6%) by gate control. Combined with the atomic thickness and wafer-scale growth capabilities of monolayer TMDC, the efficient electrical tuning of spin-valley photocurrent suggests a pathway to achieve spin-logic processing by local gate architectures in monolayer opto-spintronic devices.

16.
Proc Natl Acad Sci U S A ; 115(38): 9509-9514, 2018 09 18.
Article de Anglais | MEDLINE | ID: mdl-30181293

RÉSUMÉ

Lead halide perovskites are used in thin-film solar cells, which owe their high efficiency to the long lifetimes of photocarriers. Various calculations find that a dynamical Rashba effect could significantly contribute to these long lifetimes. This effect is predicted to cause a spin splitting of the electronic bands of inversion-symmetric crystalline materials at finite temperatures, resulting in a slightly indirect band gap. Direct experimental evidence of the existence or the strength of the spin splitting is lacking. Here, we resonantly excite photocurrents in single crystalline ([Formula: see text])[Formula: see text] with circularly polarized light to clarify the existence of spin splittings in the band structure. We observe a circular photogalvanic effect, i.e., the photocurrent depends on the light helicity, in both orthorhombic and tetragonal ([Formula: see text])[Formula: see text] At room temperature, the effect peaks for excitation photon energies [Formula: see text] meV below the direct optical band gap. Temperature-dependent measurements reveal a sign change of the effect at the orthorhombic-tetragonal phase transition, indicating different microscopic origins in the two phases. Within the tetragonal phase, both [Formula: see text] and the amplitude of the circular photogalvanic effect increase with temperature. Our findings support a dynamical Rashba effect in this phase, i.e., a spin splitting caused by thermally induced structural fluctuations which break inversion symmetry.

17.
ACS Nano ; 12(2): 1811-1820, 2018 02 27.
Article de Anglais | MEDLINE | ID: mdl-29357222

RÉSUMÉ

A key concept in the emerging field of spintronics is the voltage-gate control of spin precession via the effective magnetic field generated by the Rashba spin-orbit coupling (SOC). Traditional external gate voltage usually needs a power supply, which can easily bring about background noise or lead to a short circuit in measurement, especially for nanoscale spintronic devices. Here, we present a study on the circular photogalvanic effect (CPGE) in a ZnO/P3HT nanowire array structure with the device excited under oblique incidence. We demonstrate that a strong Rashba SOC is induced by the structure inversion asymmetry of the ZnO/P3HT heterointerface. We show that the Rashba SOC can be effectively tuned by inner-crystal piezo-potential created inside the ZnO nanowires instead of an externally applied voltage. The piezo-potential can not only ensure the stability of future spin-devices under a static pressure or strain but also work without the need of extra energy; hence this room-temperature generation and piezotronic effect control of spin photocurrent demonstrate a potential application in large-scale flexible spintronics in piezoelectric nanowire systems.

18.
Nanoscale Res Lett ; 11(1): 477, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27783377

RÉSUMÉ

The ratio of Rashba and Dresselhaus spin splittings of the (001)-grown GaAs/AlGaAs quantum wells (QWs), investigated by the spin photocurrent spectra induced by circular photogalvanic effect (CPGE) at inter-band excitation, has been effectively tuned by changing the well width of QWs and by inserting a one-monolayer-thick InAs layer at interfaces of GaAs/AlGaAs QWs. Reflectance difference spectroscopy (RDS) is also employed to study the interface asymmetry of the QWs, whose results are in good agreement with that obtained by CPGE measurements. It is demonstrated that the inserted ultra-thin InAs layers will not only introduce structure inversion asymmetry (SIA), but also result in additional interface inversion asymmetry (IIA), whose effect is much stronger in QWs with smaller well width. It is also found that the inserted InAs layer brings in larger SIA than IIA. The origins of the additional SIA and IIA introduced by the inserted ultra-thin InAs layer have been discussed.

19.
Nano Lett ; 15(2): 1152-7, 2015 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-25574856

RÉSUMÉ

Spintronic devices rely on the spin degree of freedom (DOF), and spin orbit coupling (SOC) is the key to manipulate spin DOF. Quasi-one-dimensional structures, possessing marked anisotropy gives more choice for the manipulation of the spin DOF since the concrete SOC form varies along with crystallographic directions. The anisotropy of the Dresselhaus SOC in cadmium selenide (CdSe) nanobelt and nanowire was studied by circular photogalvanic effect. It was demonstrated that the Dresselhaus SOC parameter is zero along the [0001] crystallographic direction, which suppresses the spin relaxation and increases the spin diffusion length, and thus is beneficial to the spin manipulation. To achieve a device structure with Rashba SOC presence and Dresselhaus SOC absence for manipulating the spin DOF, an ionic liquid gate was produced on a nanowire grown along the [0001] crystallographic direction, and the Rashba SOC was induced by gating, as expected.


Sujet(s)
Composés du cadmium/composition chimique , Liquides ioniques/composition chimique , Nanofils , Composés du sélénium/composition chimique , Cristallographie , Microscopie électronique à transmission
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE