Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plant J ; 119(5): 2385-2401, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38985498

RÉSUMÉ

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.


Sujet(s)
Citrus , Régulation de l'expression des gènes végétaux , Protéines végétales , Facteurs de transcription , Protéines végétales/génétique , Protéines végétales/métabolisme , Citrus/génétique , Citrus/physiologie , Citrus/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Végétaux génétiquement modifiés , Nicotiana/génétique , Nicotiana/physiologie , Nicotiana/métabolisme , Basse température , Sucres/métabolisme , Stérols/métabolisme , Réponse au choc froid/génétique
2.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-38468207

RÉSUMÉ

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Sujet(s)
Protéines d'Arabidopsis , Cucurbita , Acide abscissique/pharmacologie , Acide abscissique/métabolisme , Cucurbita/génétique , Cucurbita/métabolisme , Étude d'association pangénomique , Plantes/génétique , Réponse au choc froid , Régulation de l'expression des gènes végétaux , Protéines d'Arabidopsis/génétique
3.
Plant Sci ; 337: 111880, 2023 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-37778469

RÉSUMÉ

Radish is one of the most economical root vegetable crops worldwide. Cold stress dramatically impedes radish taproot formation and development as well as reduces its yield and quality. Although the Cycling Dof Factors (CDFs) play crucial roles in plant growth, development and abiotic stress responses, how CDF TFs mediate the regulatory network of cold stress response remains largely unexplored in radish. Herein, a total of nine RsCDF genes were identified from the radish genome. Among them, the RsCDF3 exhibited obviously up-regulated expression under cold stress, especially at 12 h and 24 h. RsCDF3 was localized to the nucleus and displayed dramatic cold-induced promoter activity in tobacco leaves. Moreover, overexpression of RsCDF3 significantly enhanced cold tolerance of radish plants, whereas its knock-down plants exhibited the opposite phenotype. Interestingly, both in vitro and in vivo assays indicated that the RsCDF3 repressed the transcription of RsRbohA and RsRbohC via directly binding to their promoters, which contributed to maintaining the cellular homeostasis of reactive oxygen species (ROS) production and scavenging in radish. In addition, the RsCDF3 bound to its own promoter to mediate its transcription, thereby forming an autoregulatory feedback loop to cooperatively trigger RsRbohs-dependent cold tolerance. Together, we revealed a novel RsCDF3-RsRbohs module to promote the cold tolerance in radish plants. These findings would facilitate unveiling the molecular mechanism governing RsCDF3-mediated cold stress response in radish.

4.
Front Plant Sci ; 14: 1212967, 2023.
Article de Anglais | MEDLINE | ID: mdl-37810393

RÉSUMÉ

Dalbergia cultrata Pierre Graham ex Benth (D. cultrata) is a precious rosewood tree species that grows in the tropical and subtropical regions of Asia. In this study, we used PacBio long-reading sequencing technology and Hi-C assistance to sequence and assemble the reference genome of D. cultrata. We generated 171.47 Gb PacBio long reads and 72.43 Gb Hi-C data and yielded an assembly of 10 pseudochromosomes with a total size of 690.99 Mb and Scaffold N50 of 65.76 Mb. The analysis of specific genes revealed that the triterpenoids represented by lupeol may play an important role in D. cultrata's potential medicinal value. Using the new reference genome, we analyzed the resequencing of 19 Dalbergia accessions and found that D. cultrata and D. cochinchinensis have the latest genetic relationship. Transcriptome sequencing of D. cultrata leaves grown under cold stress revealed that MYB transcription factor and E3 ubiquitin ligase may be playing an important role in the cold response of D. cultrata. Genome resources and identified genetic variation, especially those genes related to the biosynthesis of phytochemicals and cold stress response, will be helpful for the introduction, domestication, utilization, and further breeding of Dalbergia species.

5.
Parasit Vectors ; 16(1): 358, 2023 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-37817288

RÉSUMÉ

BACKGROUND: Histone acetylation is involved in the regulation of stress responses in multiple organisms. Dermacentor silvarum is an important vector tick species widely distributed in China, and low temperature is a crucial factor restricting the development of its population. However, knowledge of the histone acetyltransferases and epigenetic mechanisms underlying cold-stress responses in this tick species is limited. METHODS: Histone acetyltransferase genes were characterized in D. silvarum, and their relative expressions were determined using qPCR during cold stress. The association and modulation of histone acetyltransferase genes were further explored using RNA interference, and both the H3K9 acetylation level and relative expression of KAT5 protein were evaluated using western blotting. RESULTS: Three histone acetyltransferase genes were identified and named as DsCREBBP, DsKAT6B, and DsKAT5. Bioinformatics analysis showed that they were unstable hydrophilic proteins, characterized by the conserved structures of CBP (ZnF_TAZ), PHA03247 super family, Creb_binding, and MYST(PLN00104) super family. Fluorescence quantitative PCR showed that the expression of DsCREBBP, DsKAT6B, and DsKAT5 increased after 3 days of cold treatment, with subsequent gradual decreases, and was lowest on day 9. Western blotting showed that both the H3K9 acetylation level and relative expression of KAT5 in D. silvarum increased after treatment at - 4, 4, and 8 °C for 3 and 6 days, whereas they decreased significantly after a 9-day treatment. RNA interference induced significant gene silencing, and the mortality rate of D. silvarum significantly increased at the respective semi-lethal temperatures. CONCLUSION: These results imply that histone acetyltransferases play an important role in tick adaptation to low temperatures and lay a foundation for further understanding of the epigenetic regulation of histone acetylation in cold-stressed ticks. Further research is needed to elucidate the mechanisms underlying histone acetylation during cold stress in ticks.


Sujet(s)
Dermacentor , Ixodidae , Animaux , Dermacentor/génétique , Épigenèse génétique , Histone/génétique , Histone acetyltransferases/génétique
6.
Front Plant Sci ; 14: 1113125, 2023.
Article de Anglais | MEDLINE | ID: mdl-36909419

RÉSUMÉ

The molecular mechanisms of freezing tolerance are unresolved in the perennial trees that can survive under much lower freezing temperatures than annual herbs. Since natural conditions involve many factors and temperature usually cannot be controlled, field experiments alone cannot directly identify the effects of freezing stress. Lab experiments are insufficient for trees to complete cold acclimation and cannot reflect natural freezing-stress responses. In this study, a new method was proposed using field plus lab experiments to identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees using Camellia oleifera as a case. Cultivated C. oleifera is the dominant woody oil crop in China. Wild C. oleifera at the high-elevation site in Lu Mountain could survive below -30°C, providing a valuable genetic resource for the breeding of freezing tolerance. In the field experiment, air temperature was monitored from autumn to winter on wild C. oleifera at the high-elevation site in Lu Mountain. Leave samples were taken from wild C. oleifera before cold acclimation, during cold acclimation and under freezing temperature. Leaf transcriptome analyses indicated that the gene functions and expression patterns were very different during cold acclimation and under freezing temperature. In the lab experiments, leaves samples from wild C. oleifera after cold acclimation were placed under -10°C in climate chambers. A cultivated C. oleifera variety "Ganwu 1" was used as a control. According to relative conductivity changes of leaves, wild C. oleifera showed more freezing-tolerant than cultivated C. oleifera. Leaf transcriptome analyses showed that the gene expression patterns were very different between wild and cultivated C. oleifera in the lab experiment. Combing transcriptome results in both of the field and lab experiments, the common genes associated with freezing-stress responses were identified. Key genes of the flg22, Ca2+ and gibberellin signal transduction pathways and the lignin biosynthesis pathway may be involved in the freezing-stress responses. Most of the genes had the highest expression levels under freezing temperature in the field experiment and showed higher expression in wild C. oleifera with stronger freezing tolerance in the lab experiment. Our study may help identify freezing tolerance and underlying molecular mechanisms in trees.

7.
BMC Genomics ; 24(1): 77, 2023 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-36803355

RÉSUMÉ

BACKGROUND: Low temperatures are known to limit the growth and geographical distribution of poplars. Although some transcriptomic studies have been conducted to explore the response of poplar leaves to cold stress, only a few have comprehensively analyzed the effects of low temperature on the transcriptome of poplars and identified genes related to cold stress response and repair of freeze-thaw injury. RESULTS: We exposed the Euramerican poplar Zhongliao1 to low temperatures; after stems were exposed to - 40℃, 4℃, and 20℃, the mixture of phloem and cambium was collected for transcriptome sequencing and bioinformatics analysis. A total of 29,060 genes were detected, including 28,739 known genes and 321 novel genes. Several differentially expressed genes (n = 36) were found to be involved in the Ca2+ signaling pathway, starch-sucrose metabolism pathway, abscisic acid signaling pathway, and DNA repair. They were functionally annotated; glucan endo-1,3-beta-glucosidase and UDP-glucuronosyltransferase genes, for instance, showed a close relationship with cold resistance. The expression of 11 differentially expressed genes was verified by qRT-PCR; RNA-Seq and qRT-PCR data were found to be consistent, which validated the robustness of our RNA-Seq findings. Finally, multiple sequence alignment and evolutionary analysis were performed, the results of which suggested a close association between several novel genes and cold resistance in Zhongliao1. CONCLUSION: We believe that the cold resistance and freeze-thaw injury repair genes identified in this study are of great significance for cold tolerance breeding.


Sujet(s)
Populus , Température , Populus/génétique , Régulation de l'expression des gènes végétaux , Amélioration des plantes , Analyse de profil d'expression de gènes , Transcriptome , Basse température , Réponse au choc froid/génétique
8.
Int J Biol Macromol ; 229: 766-777, 2023 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-36610562

RÉSUMÉ

Invertases are ubiquitous enzymes that catalyze the unalterable cleavage of sucrose into glucose and fructose, and are crucially involved in plant growth, development and stress response. In this study, a total of 17 putative invertase genes, including 3 cell wall invertases, 3 vacuolar invertases, and 11 neutral invertases were identified in apple genome. Subcellular localization of MdNINV7 and MdNINV11 indicated that both invertases were located in the cytoplasm. Comprehensive analyses of physicochemical properties, chromosomal localization, genomic characterization, and gene evolution of MdINV family were conducted. Gene duplication revealed that whole-genome or segmental duplication and random duplication might have been the major driving force for MdINVs expansion. Selection index values, ω, showed strong evidence of positive selection signatures among the INV clusters. Gene expression analysis indicated that MdNINV1/3/6/7 members are crucially involved in fruit development and sugar accumulation. Similarly, expression profiles of MdCWINV1, MdVINV1, and MdNINV1/2/7/11 suggested their potential roles in response to cold stress. Furthermore, overexpression of MdNINV11 in apple calli at least in part promoted the expression of MdCBF1-5 and H2O2 detoxification in response to cold. Overall, our results will be useful for understanding the functions of MdINVs in the regulation of apple fruit development and cold stress response.


Sujet(s)
Malus , beta-Fructofuranosidase , beta-Fructofuranosidase/génétique , beta-Fructofuranosidase/métabolisme , Malus/génétique , Malus/métabolisme , Peroxyde d'hydrogène/métabolisme , Famille multigénique , Phylogenèse , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme
9.
Front Plant Sci ; 13: 1035627, 2022.
Article de Anglais | MEDLINE | ID: mdl-36420021

RÉSUMÉ

The basic leucine zipper (bZIP) is a transcription factor family that plays critical roles in abiotic and biotic stress responses as well as plant development and growth. A comprehensive genome-wide study in Liriodendron chinense was conducted to identify 45 bZIP transcription factors (LchibZIPs), which were divided into 13 subgroups according the phylogenetic analysis. Proteins in the same subgroup shared similar gene structures and conserved domains, and a total of 20 conserved motifs were revealed in LchibZIP proteins. Gene localization analysis revealed that LchibZIP genes were unequally distributed across 16 chromosomes, and that 4 pairs of tandem and 9 segmental gene duplications existed. Concluding that segmental duplication events may be strongly associated with the amplification of the L. chinense bZIP gene family. We also assessed the collinearity of LchibZIPs between the Arabidopsis and Oryza and showed that the LchibZIP is evolutionarily closer to O. sativa as compared to the A. thaliana. The cis-regulatory element analysis showed that LchibZIPs clustered in one subfamily are involved in several functions. In addition, we gathered novel research suggestions for further exploration of the new roles of LchibZIPs from protein-protein interactions and gene ontology annotations of the LchibZIP proteins. Using the RNA-seq data and qRT-PCR we analyzed the gene expression patterns of LchibZIP genes, and showed that LchibZIP genes regulate cold stress, especially LchibZIP4 and LchibZIP7; and LchibZIP2 and LchibZIP28 which were up-regulated and down-regulated by cold stress, respectively. Studies of genetic engineering and gene function in L. chinense can benefit greatly from the thorough investigation and characterization of the L. chinense bZIP gene family.

10.
Plants (Basel) ; 11(21)2022 Oct 27.
Article de Anglais | MEDLINE | ID: mdl-36365324

RÉSUMÉ

Low-temperature stress is an increasing problem for the cultivation of tea (Camellia sinensis), with adverse effects on plant growth and development and subsequent negative impacts on the tea industry. Methyl jasmonate (MeJA), as a plant inducer, can improve the cold-stress tolerance in tea plants. R2R3-MYB transcription factors (TFs) are considered potentially important regulators in the resistance to cold stress in plants. However, the molecular mechanisms, by which MYB TFs via the jasmonic acid pathway respond to cold stress in the tea plant, remain unknown. In this study, physiological and biochemical assays showed that exogenous MeJA application could effectively promote ROS scavenging in the tea plant under cold stress, maintaining the stability of the cell membrane. Sixteen R2R3-MYB TFs genes were identified from the tea plant genome database. Quantitative RT-PCR analysis showed that three CsMYB genes were strongly induced under a combination of MeJA and cold-stress treatment. Subcellular localization assays suggest CsMYB45, CsMYB46, and CsMYB105 localized in the nucleus. Exogenous MeJA treatment enhanced the overexpression of CsMYB45, CsMYB46, and CsMYB105 in E. coli and improved the growth and survival rates of recombinant cells compared to an empty vector under cold stress. Yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that CsMYB46 and CsMYB105 interacted with CsJAZ3, CsJAZ10, and CsJAZ11 in the nucleus. Taken together, these results highlight that CsMYB45, CsMYB46, and CsMYB105 are not only key components in the cold-stress signal response pathway but also may serve as points of confluence for cold stress and JA signaling pathways. Furthermore, our findings provide new insight into how MYB TFs influence cold tolerance via the jasmonic acid pathway in tea and provide candidate genes for future functional studies and breeding.

11.
BMC Plant Biol ; 21(1): 268, 2021 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-34116634

RÉSUMÉ

BACKGROUND: Brassinosteroid-insensitive 1 suppressor 1 (BRS1) is a serine carboxypeptidase that mediates brassinosteroid signaling and participates in multiple developmental processes in Arabidopsis. However, little is known about the precise role of BRS1 in this context. RESULTS: In this study, we analyzed transcriptional and proteomic profiles of Arabidopsis seedlings overexpressing BRS1 and found that this gene was involved in both cold stress responses and redox regulation. Further proteomic evidence showed that BRS1 regulated cell redox by indirectly interacting with cytosolic NADP + -dependent isocitrate dehydrogenase (cICDH). One novel alternative splice form of BRS1 was identified in over-expression mutants brs1-1D, which may confer a new role in plant development and stress responses. CONCLUSIONS: This study highlights the role of BRS1 in plant redox regulation and stress responses, which extends our understanding of extracellular serine carboxypeptidases.


Sujet(s)
Éléments de réponse aux anti-oxydants/génétique , Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Arabidopsis/physiologie , Carboxypeptidases/génétique , Basse température , Transduction du signal/génétique , Stress physiologique/génétique , Régulation de l'expression des gènes végétaux , Variation génétique , Génotype
12.
Int J Mol Sci ; 21(18)2020 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-32961678

RÉSUMÉ

Rice (Oryza sativa L.), a staple crop plant that is a major source of calories for approximately 50% of the human population, exhibits various physiological responses against temperature stress. These responses are known mechanisms of flexible adaptation through crosstalk with the intrinsic circadian clock. However, the molecular regulatory network underlining this crosstalk remains poorly understood. Therefore, we performed systematic transcriptome data analyses to identify the genes involved in both cold stress responses and diurnal rhythmic patterns. Here, we first identified cold-regulated genes and then identified diurnal rhythmic genes from those (119 cold-upregulated and 346 cold-downregulated genes). We defined cold-responsive diurnal rhythmic genes as CD genes. We further analyzed the functional features of these CD genes through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and performed a literature search to identify functionally characterized CD genes. Subsequently, we found that light-harvesting complex proteins involved in photosynthesis strongly associate with the crosstalk. Furthermore, we constructed a protein-protein interaction network encompassing four hub genes and analyzed the roles of the Stay-Green (SGR) gene in regulating crosstalk with sgr mutants. We predict that these findings will provide new insights in understanding the environmental stress response of crop plants against climate change.


Sujet(s)
Rythme circadien/physiologie , Réponse au choc froid/physiologie , Bases de données d'acides nucléiques , Régulation de l'expression des gènes végétaux/physiologie , Oryza , Transcriptome/physiologie , Oryza/génétique , Oryza/métabolisme
13.
Cell Stress Chaperones ; 25(6): 833-846, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32676830

RÉSUMÉ

Eukaryotic cells respond to hypothermic stress through a series of regulatory mechanisms that preserve energy resources and prolong cell survival. These mechanisms include alterations in gene expression, attenuated global protein synthesis and changes in the lipid composition of the phospholipid bilayer. Cellular responses to hyperthermia, hypoxia, nutrient deprivation and oxidative stress have been comprehensively investigated, but studies of the cellular response to cold stress are more limited. Responses to cold stress are however of great importance both in the wild, where exposure to low and fluctuating environmental temperatures is common, and in medical and biotechnology settings where cells and tissues are frequently exposed to hypothermic stress and cryopreservation. This means that it is vitally important to understand how cells are impacted by low temperatures and by the decreases and subsequent increases in temperature associated with cold stress. Here, we review the ways in which eukaryotic cells respond to hypothermic stress and how these compare to the well-described and highly integrated stress response systems that govern the cellular response to other types of stress.


Sujet(s)
Eucaryotes/physiologie , Hypothermie/physiopathologie , Stress physiologique , Animaux , Membrane cellulaire/métabolisme , Humains , Hypoxie/physiopathologie , Stress oxydatif
14.
J Biol Chem ; 295(19): 6372-6386, 2020 05 08.
Article de Anglais | MEDLINE | ID: mdl-32209657

RÉSUMÉ

The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.


Sujet(s)
Opéron/génétique , RNA helicases/métabolisme , ARN non traduit/métabolisme , Synechocystis/enzymologie , Synechocystis/génétique , Régions 5' non traduites/génétique , Séquence nucléotidique , Régulation de l'expression des gènes bactériens
15.
Microorganisms ; 8(2)2020 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-32093408

RÉSUMÉ

The involvement of DNA methylation in the response to cold stress of two different yeast species (Naganishia antarctica, psychrophilic, and Naganishia albida, psychrotolerant), exhibiting different temperature aptitudes, has been studied. Consecutive incubations at respective optimum temperatures, at 4 °C (cold stress) and at optimum temperatures again, were performed. After Methylation Sensitive Amplified Polymorphism (MSAP) fingerprints a total of 550 and 423 clear and reproducible fragments were amplified from N. antarctica and N. albida strains, respectively. The two Naganishia strains showed a different response in terms of level of DNA methylation during cold stress and recovery from cold stress. The percentage of total methylated fragments in psychrophilic N. antarctica did not show any significant change. On the contrary, the methylation of psychrotolerant N. albida exhibited a nonsignificant increase during the incubation at 4 °C and continued during the recovery step, showing a significant difference if compared with control condition, resembling an uncontrolled response to cold stress. A total of 12 polymorphic fragments were selected, cloned, and sequenced. Four fragments were associated to genes encoding for elongation factor G and for chitin synthase export chaperon. To the best of our knowledge, this is the first study on DNA methylation in the response to cold stress carried out by comparing a psychrophilic and a psychrotolerant yeast species.

16.
Int J Mol Sci ; 19(12)2018 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-30563125

RÉSUMÉ

Low temperatures have adverse impacts on plant growth, developmental processes, crop productivity and food quality. It is becoming clear that Ca2+ signaling plays a crucial role in conferring cold tolerance in plants. However, the role of Ca2+ involved in cold stress response needs to be further elucidated. Recent studies have shown how the perception of cold signals regulate Ca2+ channels to induce Ca2+ transients. In addition, studies have shown how Ca2+ signaling and its cross-talk with nitric oxide (NO), reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling pathways ultimately lead to establishing cold tolerance in plants. Ca2+ signaling also plays a key role through Ca2+/calmodulin-mediated Arabidopsis signal responsive 1 (AtSR1/CAMTA3) when temperatures drop rapidly. This review highlights the current status in Ca2+ signaling-mediated cold tolerance in plants.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Signalisation calcique/physiologie , Réponse au choc froid/physiologie , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Facteurs de transcription/génétique
17.
Adv Exp Med Biol ; 1081: 23-44, 2018.
Article de Anglais | MEDLINE | ID: mdl-30288702

RÉSUMÉ

In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.


Sujet(s)
Acclimatation/génétique , Basse température , Réponse au choc froid/génétique , Plantes/génétique , ARN messager/génétique , ARN des plantes/génétique , Régulation de l'expression des gènes végétaux , Génotype , Phénotype , Plantes/métabolisme , Maturation post-transcriptionnelle des ARN , Stabilité de l'ARN , ARN messager/métabolisme , ARN des plantes/métabolisme , Transduction du signal
18.
Genes Genomics ; 40(11): 1181-1197, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30315521

RÉSUMÉ

Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at 4 °C for 2 h) and LT24 (cold treatment at 4 °C for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.


Sujet(s)
Réponse au choc froid/génétique , Régulation de l'expression des gènes végétaux , Hevea/génétique , Analyse de profil d'expression de gènes , Gene Ontology , Hevea/métabolisme , Analyse de séquence d'ARN , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
19.
Cent Eur J Immunol ; 43(2): 186-193, 2018.
Article de Anglais | MEDLINE | ID: mdl-30135632

RÉSUMÉ

AIM OF THE STUDY: The aim of our research was to examine the influence of single whole-body cryostimulation (WBC) on chosen immune system indicators including the heat shock protein HSP-70. MATERIAL AND METHODS: The study was carried out among ten young and healthy men (mean age 22.4 ±1.65, with a body mass index of 22.91 ±2.39 kg/m2). The participants were subjected to single whole-body cryostimulation (at -130°C temperatures) in a special cryogenic chamber for 3 minutes. Blood samples were collected three times: before cryostimulation, 30 minutes and 24 hours after WBC. Immunoglobulins (IgA, IgG, IgM), interleukins (IL-6, IL-10, IL-1ß) and the heat shock protein (HSP-70) were determined in the blood serum. RESULTS: As a result of a single exposure to cryogenic temperatures, a significant increase in the level of IL-6 was observed 30 minutes after the WBC (p < 0.05) and a decrease in the level of HSP-70 24 hours after the treatment (p < 0.05). There were no significant changes in the level of interleukins (IL-10, IL-1ß) or immunoglobulins 30 minutes after a single WBC treatment or 24 hours later. CONCLUSIONS: Detailed analysis of the issue shows that a single application of whole-body cryostimulation causes a small, modulating effect on the IL-6 level. Single whole-body cryostimulation treatment has also a slight silencing effect on the HSP-70 level in healthy, young men. Reduction in the concentration of HSP-70 24 hours after WBC may indicate lack of the damaging impact on the spatial structure of the protein due to cryogenic temperatures.

20.
Proc Natl Acad Sci U S A ; 115(23): E5400-E5409, 2018 06 05.
Article de Anglais | MEDLINE | ID: mdl-29784800

RÉSUMÉ

Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Chromatine/métabolisme , Chromatine/physiologie , Protéines chromosomiques nonhistones/métabolisme , Acétylation , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines chromosomiques nonhistones/génétique , Basse température , Réponse au choc froid/génétique , Réponse au choc froid/physiologie , Épigenèse génétique/génétique , Épigénomique/méthodes , Régulation de l'expression des gènes végétaux/génétique , Histone deacetylases/génétique , Histone deacetylases/métabolisme , Histone/métabolisme , Régions promotrices (génétique)/génétique , Maturation post-traductionnelle des protéines , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE