Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 383
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-39362313

RÉSUMÉ

PURPOSE: The IROC head and neck phantom is used to credential institutions for IMRT delivery for all anatomical sites where delivery of modulated therapy is a primary challenge. This study evaluated how appropriate the use of this phantom is for varied clinical anatomy by evaluating how closely the IROC head and neck phantom described clinical dose errors from beam modeling compared to various anatomical sites. METHODS: The MLC offset, transmission, PDD and seven additional beam modeling parameters for a Varian accelerator were modified in RayStation to match community data at the 2.5, 25, 50, 75 and 97.5 percentile levels. Modifications were evaluated on 25 H&N phantom cases and 25 clinical cases (H&N, prostate, lung, mesothelioma, and brain), generating 2,000 plan perturbations. Differences in mean dose delivered to clinical target volumes (CTV) and organs at risk (OAR) were compared between phantom and clinical plans to assess the relationship between dose deviations in phantom versus clinical CTVs, and as a function of 18 different complexity metrics. RESULTS: Perturbations to MLC offset and transmission parameters demonstrated the greatest impact on dose accuracy for phantom and clinical plans (for all anatomic sites). The phantom demonstrated equivalent or greater sensitivity to these parameter perturbations when compared to clinical sites, largely aligning with treatment complexity. The mean MLC Gap best described the impact of errors in TPS beam modeling parameters in phantoms plan and clinical plans from various anatomical sites. CONCLUSION: When compared across various anatomical sites, the IROC H&N credentialing phantom exhibited similar or greater sensitivity to errors in the treatment planning system. As such, it is a suitable surrogate device for assessing institutional performance across various anatomical sites. If an institution successfully irradiates the phantom, that result confers confidence that IMRT to a wide range of anatomical sites can be successfully delivered by the institution.

2.
Appl Radiat Isot ; 214: 111513, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39276636

RÉSUMÉ

PURPOSE: Investigating the effects of unequal sub-arc personalized collimator angle selection on the quality of Volumetric Modulated Arc Therapy (VMAT) plans for treating multiple brain metastases. METHODS: This study included 21 patients, each with 2-4 target volumes of multiple brain metastases. Two stereotactic radiotherapy (SRT) approaches were utilized: sub-arc collimator VMAT (SAC-VMAT) and fixed collimator VMAT (FC-VMAT). In the SAC-VMAT group, multi-leaf collimators (MLC) shaped the target area, dividing the full arc into four unequal sub-arcs under the beam's eye view (BEV). Each sub-arc had an appropriate collimator angle selected to mitigate 'island blocking problems'. Conversely, the FC-VMAT group used a fixed collimator angle of 15° or 345°. A comparative analysis of the dosimetric parameters of the target volumes and normal tissues, along with the monitor units (MU), was conducted between the two groups. RESULTS: The mean dose and dose-volume to normal brain tissue (2-26 Gy, with a step of 2 Gy) were significantly lower in the SAC-VMAT group (P < 0.01). There was no statistical difference between the two groups in dose to the target volumes, conformity index (CI), homogeneity index (HI), and other normal tissues (P > 0.05). Compared with the FA-VMAT group, the SAC-VMAT group significantly reduced the gradient index (GI) (4.5 ± 0.59 vs 5.2 ± 0.75, P < 0.001) and MU (1774.33 ± 181.77 vs 2001.0 ± 344.86, P < 0.001). Notably, with an increase in the number of PTV, the SAC-VMAT group demonstrated more significant improvements in the dose-volume of normal brain tissue, GI, and MU. CONCLUSIONS: In this study, personalized selection of the unequal sub-arc collimator angle ensured the prescribed dose to the PTV, CI, and HI, while significantly reducing the GI, MU, and the dose to normal brain tissue in the VMAT plan for multi-target brain metastases in the cohort of cases with 2-4 target volumes. Particularly as the number of targets increase, the advantages of this method become more pronounced.

3.
Med Dosim ; 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39306546

RÉSUMÉ

In planning the treatment of spinal metastases using stereotactic body radiotherapy (SBRT), the optimal blocking of the spinal cord to match the leaf travel can be achieved with a first-arc collimator angle of approximately 90°. We aim to clarify the optimal second-arc collimator angles when the first-arc collimator angle is fixed to 90° in dual-arc volumetric modulated arc therapy (VMAT). For this retrospective study, we considered 37 spinal segments with spinal metastases and created dual-arc VMAT plans. In the plans, 24 Gy in 2 fractions were prescribed, and the first-arc collimator angle was fixed to 90° while varying the second-arc collimator angle in increments of 15° from 0° to 90°. All the plans were normalized such that the planning organ-at-risk volume for the spinal cord D0.035 cc = 17 Gy and satisfied other dose constraints. D95% for the planning target volume (PTV), V100% for the overlap between the PTV and 10 mm expansion of the spinal cord, modified gradient index, monitor unit, and 3%/1 mm gamma passing rates were compared between different second-arc collimator angles using the Wilcoxon signed-rank test and Bonferroni correction. PTV D95% and overlap V100% were the highest for a second-arc collimator angle of 45° and decreased as the angle approached either 0° or 90°. The maximum mean differences of PTV D95% and overlap V100% were -2.66% (90° vs 45°, p < 0.0024) and -5.49% (90° vs 45°, p < 0.0024), respectively. Moreover, the second-arc collimator angle of 45° was the least suitable in terms of the modified gradient index. The required monitor unit increased from the second-arc collimator angle of 15° to 45°, and the 3%/1 mm gamma passing rates reached over 95% for the evaluated second-arc collimator angles of 15°, 30°, and 45°. We found that in the dual-arc VMAT plan for spine SBRT, second-arc collimator angles other than 90° were suitable, and 45° was the optimal angle in terms of target coverage including the area around the spinal cord.

4.
J Appl Clin Med Phys ; : e14523, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39258581

RÉSUMÉ

PURPOSE: This study investigates the influence of gantry and collimator angles on the dosimetric leaf gap (DLG) and leaf transmission factor (LTF) in a Varian LINAC equipped with rounded-end multi-leaf collimators (MLCs). While Varian guidelines recommend DLG measurements at zero degrees for both gantry and collimator, this research aims to address the knowledge gap by assessing DLG and LTF variations at different gantry and collimator angles. METHODS: Measurements were conducted using a Varian TrueBeam LINAC with a Millennium 120-leaf MLC and Eclipse TPS version 16.1. The beams utilized in this study had energies of 6 MV, 10 MV, 6 FFF, and 10 FFF. LTF and DLG were determined using ionization chambers in solid water phantoms at various gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). For each gantry angle, measurements were also taken at various collimator angles (0°, 45°, 90°, and 315°). Dosimetric impacts were evaluated through VMAT Picket Fence tests and patient-specific verification using portal dosimetry for 10 clinical VMAT plans. RESULTS: LTF values showed no significant variation across gantry and collimator angles. However, DLG values exhibited notable differences depending on the gantry angle and were independent of the collimator angle. The highest DLG value was observed at a gantry angle of 270 degrees, while the lowest was at 90 degrees. The AXB DLGAverage (averaging seven measurements of DLGs at different gantry angles) model demonstrated the best agreement between measured and calculated dose distributions, indicating the importance of considering averaged DLG values across multiple gantry angles for accurate dose calculations. CONCLUSION: Our study highlights the variability of DLG with gantry angle alterations, contrary to Varian guidelines recommending DLG measurements at zero gantry angle only. We advocate for utilizing an averaged DLG value from measurements across multiple gantry angles, as outlined in our methodology.

5.
J Nucl Med Technol ; 52(3): 274-275, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39237333

RÉSUMÉ

Proper collimator selection is critical to obtaining high-quality, interpretable nuclear medicine images. Collimators help eliminate scatter, which leads to poor spatial resolution and blurry images. We present the case of a posttherapy 177Lu-DOTATATE (Lutathera) patient who was initially imaged with a low-energy, high-resolution collimator routinely used in 99mTc imaging. On image review, the patient was reimaged with the appropriate medium-energy, high-resolution collimator, which resulted in improved image quality. When reviewing the quality of images, it is important to understand modifications to the imaging that can significantly improve image quality and interpretation.


Sujet(s)
Octréotide , Composés organométalliques , Humains , Octréotide/analogues et dérivés , Octréotide/usage thérapeutique
6.
Phys Eng Sci Med ; 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235667

RÉSUMÉ

To develop and assess an automated Sub-arc Collimator Angle Optimization (SACAO) algorithm and Cumulative Blocking Index Ratio (CBIR) metrics for single-isocenter coplanar volumetric modulated arc therapy (VMAT) to treat multiple brain metastases. This study included 31 patients with multiple brain metastases, each having 2 to 8 targets. Initially, for each control point, the MLC blocking index was calculated at different collimator angles, resulting in a two-dimensional heatmap. Optimal sub-arc segmentation and collimator angle optimization were achieved using an interval dynamic programming algorithm. Subsequently, VMAT plans were designed using two approaches: SACAO and the conventional Full-Arc Fixed Collimator Angle. CBIR was calculated as the ratio of the cumulative blocking index between the two plan approaches. Finally, dosimetric and planning parameters of both plans were compared. Normal brain tissue, brainstem, and eyes received better protection in the SACAO group (P < 0.05).Query Notable reductions in the SACAO group included 11.47% in gradient index (GI), 15.03% in monitor units (MU), 15.73% in mean control point Jaw area (AJaw,mean), and 19.14% in mean control point Jaw-X width (WJaw-X,mean), all statistically significant (P < 0.001). Furthermore, CBIR showed a strong negative correlation with the degree of plan improvement. The SACAO method enhanced protection of normal organs while improving transmission efficiency and optimization performance of VMAT. In particular, the CBIR metrics show promise in quantifying the differences specifically in the 'island blocking problem' between SACAO and conventional VMAT, and in guiding the enhanced application of the SACAO algorithm.

7.
J Appl Clin Med Phys ; : e14506, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39250633

RÉSUMÉ

The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%-1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.

8.
In Vivo ; 38(5): 2254-2260, 2024.
Article de Anglais | MEDLINE | ID: mdl-39187370

RÉSUMÉ

BACKGROUND/AIM: The aim was to assess the complexity of breast volumetric-modulated arc therapy (VMAT) plans using various indices and to evaluate their performance through gamma analysis in predicting plan deliverability. MATERIALS AND METHODS: A total of 285 VMAT plans for 260 patients were created using the VersaHD™ linear accelerator with a Monaco treatment planning system. Corresponding verification plans were generated using the ArcCHECK® detector, and gamma analysis was conducted employing various criteria. Twenty-eight plan complexity metrics were computed, and Pearson's correlation coefficients were determined between the gamma passing rate (GPR) and these metrics. RESULTS: The average GPR values for all plans were 97.7%, 89.9%, and 78.0% for the 2 mm/2%, 1 mm/2%, and 1 mm/1% criteria, respectively. While most complexity metrics exhibited weak correlations with GPRs under the 2 mm/2% criterion, leaf sequence variability (LSV), plan-averaged beam area (PA), converted area metric (CAM), and edge area metric (EAM) demonstrated the most robust performance, with Pearson's correlation coefficients of 0.57, 0.50, -0.70, and -0.56, respectively. CONCLUSION: Metrics related to beam aperture size and irregularity, such as LSV, PA, CAM and EAM, proved to be reasonable predictors of plan deliverability in breast VMAT.


Sujet(s)
Tumeurs du sein , Dosimétrie en radiothérapie , Planification de radiothérapie assistée par ordinateur , Radiothérapie conformationnelle avec modulation d'intensité , Humains , Radiothérapie conformationnelle avec modulation d'intensité/méthodes , Planification de radiothérapie assistée par ordinateur/méthodes , Tumeurs du sein/radiothérapie , Femelle , Accélérateurs de particules/instrumentation , Algorithmes
9.
J Xray Sci Technol ; 32(5): 1331-1348, 2024.
Article de Anglais | MEDLINE | ID: mdl-39093110

RÉSUMÉ

INTRODUCTION: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) are the main radiotherapy techniques for treating and managing rectal cancer. Collimator rotation is one of the crucial parameters in radiotherapy planning, and its alteration can cause dosimetric variations. This study assessed the effect of collimator rotation on the dosimetric results of various IMRT and VMAT plans for rectal cancer. MATERIALS AND METHODS: Computed tomography (CT) images of 20 male patients with rectal cancer were utilized for IMRT and VMAT treatment planning with various collimator angles. Nine different IMRT techniques (5, 7, and 9 coplanar fields with collimator angles of 0°, 45°, and 90°) and six different VMAT techniques (1 and 2 full coplanar arcs with collimator angles of 0°, 45°, and 90°) were planned for each patient. The dosimetric results of various treatment techniques for target tissue (conformity index [CI] and homogeneity index [HI]) and organs at risk (OARs) sparing (parameters obtained from OARs dose-volume histograms [DVH]) as well as radiobiological findings were analyzed and compared. RESULTS: The 7-fields IMRT technique demonstrated lower bladder doses (V40Gy, V45Gy), unaffected by collimator rotation. The 9-fields IMRT and 2-arcs VMAT (excluding the 90-degree collimator) had the lowest V35Gy and V45Gy. A 90-degree collimator rotation in 2-arcs VMAT significantly increased small bowel and bladder V45Gy, femoral head doses, and HI values. Radiobiologically, the 90-degree rotation had adverse effects on small bowel NTCP (normal tissue complication probability). No superiority was found for a 45-degree collimator rotation over 0 or 30 degrees in VMAT techniques. CONCLUSION: Collimator rotation had minimal impact on dosimetric parameters in IMRT planning but is significant in VMAT techniques. A 90-degree rotation in VMAT, particularly in a 2-full arc technique, adversely affects PTV homogeneity index, bladder dose, and small bowel NTCP. Other evaluated collimator angles did not significantly affect VMAT dosimetrical or radiobiological outcomes.


Sujet(s)
Dosimétrie en radiothérapie , Planification de radiothérapie assistée par ordinateur , Radiothérapie conformationnelle avec modulation d'intensité , Tumeurs du rectum , Humains , Radiothérapie conformationnelle avec modulation d'intensité/méthodes , Tumeurs du rectum/radiothérapie , Tumeurs du rectum/imagerie diagnostique , Mâle , Planification de radiothérapie assistée par ordinateur/méthodes , Organes à risque/effets des radiations , Rotation , Tomodensitométrie/méthodes , Radiométrie/méthodes
10.
Cureus ; 16(7): e64482, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39139331

RÉSUMÉ

One of the recent trends in radiation therapy is to increase conformal and accurate dose delivery such as in stereotactic radiosurgery (SRS). Treating small lesions and brain disorders requires the accurate placement of small radiation fields deep inside the human cranium. To design a collimator meeting these requirements, a new numerical concept was developed, which is presented here. The algorithm proposed here can generate beam profiles of plural collimation apertures and arbitrary initial beam spot distributions in a time-efficient method. It is an ideal tool to optimize collimator design for penumbra, dose rate, and field size. The intensity of the source beam spot is divided into slices, and each slice is projected onto the treatment plane at the isocenter through the collimator apertures. The illuminated field range and intensity are determined by geometry and the intensity of that slice of beam source, respectively. By integrating the projected intensity across all the slices of the source profile, the profile on the treatment plane is obtained. The algorithm is used to generate beam profiles of a conical pencil beam collimator system and compare them to the Monte Carlo simulation as well as measurements. It can also be used to demonstrate the impact of collimator shape on the beam penumbra, dose rate, and field size. The projection integration method provides a quick and informative tool for collimator design. The results were validated with the Monte Carlo simulation and measurements. This method was demonstrated to be effective for optimizing beam characteristics.

11.
Front Oncol ; 14: 1453256, 2024.
Article de Anglais | MEDLINE | ID: mdl-39175469

RÉSUMÉ

With advancements in medical technology, stereotactic radiosurgery (SRS) has become an essential option for treating benign intracranial tumors. Due to its minimal side effects and high local control rate, SRS is widely applied. This paper evaluates the plan quality and secondary cancer risk (SCR) in patients with benign intracranial tumors treated with the CyberKnife M6 system. The CyberKnife M6 robotic radiosurgery system features both multileaf collimator (MLC) and IRIS variable aperture collimator systems, providing different treatment options. The study included 15 patients treated with the CyberKnife M6 system, examining the differences in plan quality and SCR between MLC and IRIS systems. Results showed that MLC and IRIS plans had equal PTV (planning target volume) coverage (98.57% vs. 98.75%). However, MLC plans demonstrated better dose falloff and conformity index (CI: 1.81 ± 0.26 vs. 1.92 ± 0.27, P = 0.025). SCR assessment indicated that MLC plans had lower cancer risk estimates, with IRIS plans having average LAR (lifetime attributable risk) and EAR (excess absolute risk) values approximately 25% higher for cancer induction and 15% higher for sarcoma induction compared to MLC plans. The study showed that increasing tumor volume increases SCR probability, but there was no significant difference between different plans in PTV and brainstem analyses.

12.
J Appl Clin Med Phys ; : e14437, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-39031794

RÉSUMÉ

PURPOSE: The positional accuracy of MLC is an important element in establishing the exact dosimetry in VMAT. We comprehensively analyzed factors that may affect MLC positional accuracy in VMAT, and constructed a model to predict MLC positional deviation and estimate planning delivery quality according to the VMAT plans before delivery. METHODS: A total of 744 "dynalog" files for 23 VMAT plans were extracted randomly from treatment database. Multi-correlation was used to analyzed the potential influences on MLC positional accuracy, including the spatial characteristics and temporal variability of VMAT fluence, and the mechanical wear parameters of MLC. We developed a model to forecast the accuracy of MLC moving position utilizing the random forest (RF) ensemble learning method. Spearman correlation was used to further investigate the associations between MLC positional deviation and dosage deviations as well as gamma passing rates. RESULTS: The MLC positional deviation and effective impact factors show a strong multi-correlation (R = 0.701, p-value < 0.05). This leads to the development of a highly accurate prediction model with average variables explained of 95.03% and average MSE of 0.059 in the 5-fold cross-validation, and MSE of 0.074 for the test data was obtained. The absolute dose deviations caused by MLC positional deviation ranging from 12.948 to 210.235 cGy, while the relative volume deviation remained small at 0.470%-5.161%. The average MLC positional deviation correlated substantially with gamma passing rates (with correlation coefficient of -0.506 to -0.720 and p-value < 0.05) but marginally with dosage deviations (with correlation coefficient < 0.498 and p-value > 0.05). CONCLUSIONS: The RF predictive model provides a prior tool for VMAT quality assurance.

13.
Jpn J Radiol ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954193

RÉSUMÉ

PURPOSE: Collimator-detector response function (CDRF) of a SPECT scanner refers to the image generated from a point source of activity. This research aims to characterize the CDRF of a breast-dedicated SPECT imager equipped with a lofthole collimator using GATE Monte Carlo simulation. MATERIALS AND METHODS: To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99mTc point source was considered. RESULTS: For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0 ∘ to 34 ∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as 10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV. CONCLUSION: In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.

14.
Diagnostics (Basel) ; 14(13)2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-39001321

RÉSUMÉ

Single photon emission tomography/computed tomography (SPECT/CT) is a mature imaging technology with a dynamic role in the diagnosis and monitoring of a wide array of diseases. This paper reviews the technological advances, clinical impact, and future directions of SPECT and SPECT/CT imaging. The focus of this review is on signal amplifier devices, detector materials, camera head and collimator designs, image reconstruction techniques, and quantitative methods. Bulky photomultiplier tubes (PMTs) are being replaced by position-sensitive PMTs (PSPMTs), avalanche photodiodes (APDs), and silicon PMs to achieve higher detection efficiency and improved energy resolution and spatial resolution. Most recently, new SPECT cameras have been designed for cardiac imaging. The new design involves using specialised collimators in conjunction with conventional sodium iodide detectors (NaI(Tl)) or an L-shaped camera head, which utilises semiconductor detector materials such as CdZnTe (CZT: cadmium-zinc-telluride). The clinical benefits of the new design include shorter scanning times, improved image quality, enhanced patient comfort, reduced claustrophobic effects, and decreased overall size, particularly in specialised clinical centres. These noticeable improvements are also attributed to the implementation of resolution-recovery iterative reconstructions. Immense efforts have been made to establish SPECT and SPECT/CT imaging as quantitative tools by incorporating camera-specific modelling. Moreover, this review includes clinical examples in oncology, neurology, cardiology, musculoskeletal, and infection, demonstrating the impact of these advancements on clinical practice in radiology and molecular imaging departments.

15.
Phys Med Biol ; 69(14)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38876112

RÉSUMÉ

Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.


Sujet(s)
Protonthérapie , Animaux , Souris , Protonthérapie/instrumentation , Protonthérapie/méthodes , Organes à risque/effets des radiations , Dosimétrie en radiothérapie
16.
World J Nucl Med ; 23(2): 95-102, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38933066

RÉSUMÉ

Objectives The purpose of a parallel-hole collimator in a scintillation camera system is to transmit only those photons that have an emission angle close to the direction of the hole. This makes it possible to receive spatial information about the origin of the emission, that is, radioactivity decay. The dimension, shape, and intrahole thickness determine the spatial resolution and, by a tradeoff, sensitivity. The composition of the collimator material also plays an important role in determining a proper collimator. In this study, we compared tungsten alloys as a potential collimator material replacement for the conventional lead antimony material used in most of the current camera systems. Materials and Methods Monte Carlo simulations of a commercial scintillation camera system with low energy high resolution (LEHR), medium-energy (ME), and high-energy (HE) collimators of lead, tungsten, and tungsten-based alloy were simulated for different I-131, Lu-177, I-123, and Tc-99m sources, and a Deluxe rod phantom using the SIMIND Monte Carlo code. Planar images were analyzed regarding spatial resolution, image contrast in a cold source case, and system sensitivity for each collimator configuration. The hole dimensions for the three collimators were those specified in the vendor's datasheet. Results Using Pb, W, and tungsten alloy (Wolfmet) as collimator materials, the full width at half maximum (FWHM) measures for total counts (T) for LEHR with Tc-99m source (6.9, 6.8, and 6.8 mm), for ME with Lu-177 source (11.7, 11.5, and 11.6 mm), and for HE with I-131 (6.2, 13.1, and 13.1 mm) were obtained, and the system sensitivities were calculated as 89.9, 86.1, and 89.8 cps T /MBq with Tc-99m source; 42.7, 17.4, and 20.9 cps T /MBq with Lu-177 source; and 40.1, 69.7, and 77.4 cps T /MBq with I-131 source. The collimators of tungsten and tungsten alloy (97.0% W, 1.5% Fe, 1.5% Ni) provided better spatial resolution and improved image contrast when compared with conventional lead-based collimators. This was due to lower septal penetration. Conclusion The results suggest that development of a new set of ME and HE tungsten and tungsten alloy collimators could improve imaging of I-131, Lu-177, and I-123.

17.
J Appl Clin Med Phys ; 25(8): e14404, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38803034

RÉSUMÉ

BACKGROUND AND PURPOSE: This study aimed to compare the dosimetric attributes of two multi-leaf collimator based techniques, HyperArc and Incise CyberKnife, in the treatment of brain metastases. MATERIAL AND METHODS: 17 cases of brain metastases were selected including 6 patients of single lesion and 11 patients of multiple lesions. Treatment plans of HyperArc and CyberKnife were designed in Eclipse 15.5 and Precision 1.0, respectively, and transferred to Velocity 3.2 for comparison. RESULTS: HyperArc plans provided superior Conformity Index (0.91 ± 0.06 vs. 0.77 ± 0.07, p < 0.01) with reduced dose distribution in organs at risk (Dmax, p < 0.05) and lower normal tissue exposure (V4Gy-V20Gy, p < 0.05) in contrast to CyberKnife plans, although the Gradient Indexes were similar. CyberKnife plans showed higher Homogeneity Index (1.54 ± 0.17 vs. 1.39 ± 0.09, p < 0.05) and increased D2% and D50% in the target (p < 0.05). Additionally, HyperArc plans had significantly fewer Monitor Units (MUs) and beam-on time (p < 0.01). CONCLUSION: HyperArc plans demonstrated superior performance compared with MLC-based CyberKnife plans in terms of conformity and the sparing of critical organs and normal tissues, although no significant difference in GI outcomes was noted. Conversely, CyberKnife plans achieved a higher target dose and HI. The study suggests that HyperArc is more efficient and particularly suitable for treating larger lesions in brain metastases.


Sujet(s)
Tumeurs du cerveau , Organes à risque , Radiochirurgie , Dosimétrie en radiothérapie , Planification de radiothérapie assistée par ordinateur , Radiothérapie conformationnelle avec modulation d'intensité , Humains , Tumeurs du cerveau/secondaire , Tumeurs du cerveau/chirurgie , Tumeurs du cerveau/radiothérapie , Planification de radiothérapie assistée par ordinateur/méthodes , Radiochirurgie/méthodes , Organes à risque/effets des radiations , Radiothérapie conformationnelle avec modulation d'intensité/méthodes , Pronostic , Radiométrie/méthodes
18.
J Appl Clin Med Phys ; 25(8): e14410, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38810092

RÉSUMÉ

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.


Sujet(s)
Tumeurs , Accélérateurs de particules , Photons , Radiométrie , Dosimétrie en radiothérapie , Planification de radiothérapie assistée par ordinateur , Humains , Planification de radiothérapie assistée par ordinateur/méthodes , Accélérateurs de particules/instrumentation , Radiométrie/méthodes , Radiométrie/instrumentation , Tumeurs/radiothérapie , Radiothérapie conformationnelle avec modulation d'intensité/méthodes , Fantômes en imagerie , Fractionnement de la dose d'irradiation , Méthode de Monte Carlo
19.
Cureus ; 16(4): e58816, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38784358

RÉSUMÉ

PURPOSE: To compare the plan quality of stereotactic radiosurgery (SRS) between 2.5-mm and 5-mm multileaf collimator (MLC) and investigate the factors' influence on the differences by MLC size. METHODS: Seventy-six treatment plans including 145 targets calculated with a single isocenter multiple noncoplanar dynamic conformal arc (DCA) technique using automatic multiple brain metastases (MBM) treatment planning system. Conformity index (CI), gradient index (GI), lesion underdosage volume factor (LUF), healthy tissue overdose volume factor (HTOF), geometric conformity index (g), and mean dose to normal organs were compared between 2.5-mm and 5-mm MLC. Then the factors that influenced the differences of these parameters were investigated. The impact of target size was also investigated for CI and GI values of individual targets (n=145), and differences between 2.5-mm and 5-mm MLC were analyzed. RESULTS: All parameters except for LUF were significantly better in plans with 2.5 mm MLC. Target size was a significant factor for difference in HTOF, and distance between targets was a significant factor for difference in brain dose and GI. Among 145 metastases, the average inverse CI was 1.35 and 1.47 with 2.5-mm and 5-mm MLC, respectively (p<0.001). The average GI was 3.21 and 3.53, respectively (p<0.001). For individual targets, target size was a significant factor in CI and GI both with 2.5-mm and 5-mm MLC (p-value: <0.001, each). CI and GI were significantly better with 2.5-mm than 5-mm MLC. CI was almost >0.67 except for ≤5mm targets with 5-mm MLC. Also, GI was almost smaller than 3.0 for >10 mm targets both with 2.5-mm and 5-mm MLC. CONCLUSIONS: MBM with 5-mm MLC was almost fine. However, it may be better to use a conservative margin for larger metastases. It may also be better to avoid SRS with 5-mm MLC for patients with ≤5 mm target size.

20.
Phys Med Biol ; 69(10)2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38588671

RÉSUMÉ

Objective. A novel x-ray field produced by an ultrathin conical target is described in the literature. However, the optimal design for an associated collimator remains ambiguous. Current optimization methods using Monte Carlo calculations restrict the efficiency and robustness of the design process. A more generic optimization method that reduces parameter constraints while minimizing computational load is necessary. A numerical method for optimizing the longitudinal collimator hole geometry for a cylindrically-symmetrical x-ray tube is demonstrated and compared to Monte Carlo calculations.Approach. The x-ray phase space was modelled as a four-dimensional histogram differential in photon initial position, final position, and photon energy. The collimator was modeled as a stack of thin washers with varying inner radii. Simulated annealing was employed to optimize this set of inner radii according to various objective functions calculated on the photon flux at a specified plane.Main results. The analytical transport model used for optimization was validated against Monte Carlo calculations using Geant4 via its wrapper, TOPAS. Optimized collimators and the resulting photon flux profiles are presented for three focal spot sizes and five positions of the source. Optimizations were performed with multiple objective functions based on various weightings of precision, intensity, and field flatness metrics. Finally, a select set of these optimized collimators, plus a parallel-hole collimator for comparison, were modeled in TOPAS. The evolution of the radiation field profiles are presented for various positions of the source for each collimator.Significance. This novel optimization strategy proved consistent and robust across the range of x-ray tube settings regardless of the optimization starting point. Common collimator geometries were re-derived using this algorithm while simultaneously optimizing geometry-specific parameters. The advantages of this strategy over iterative Monte Carlo-based techniques, including computational efficiency, radiation source-specificity, and solution flexibility, make it a desirable optimization method for complex irradiation geometries.


Sujet(s)
Méthode de Monte Carlo , Rayons X , Photons , Modèles théoriques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE