Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Microbiome ; 12(1): 38, 2024 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-38395946

RÉSUMÉ

BACKGROUND: Although rumen development is crucial, hindgut undertakes a significant role in young ruminants' physiological development. High-starch diet is usually used to accelerate rumen development for young ruminants, but always leading to the enteral starch overload and hindgut dysbiosis. However, the mechanism behind remains unclear. The combination of colonic transcriptome, colonic luminal metabolome, and metagenome together with histological analysis was conducted using a goat model, with the aim to identify the potential molecular mechanisms behind the disrupted hindgut homeostasis by overload starch in young ruminants. RESULT: Compared with low enteral starch diet (LES), high enteral starch diet (HES)-fed goats had significantly higher colonic pathology scores, and serum diamine oxidase activity, and meanwhile significantly decreased colonic mucosal Mucin-2 (MUC2) protein expression and fecal scores, evidencing the HES-triggered colonic systemic inflammation. The bacterial taxa Prevotella sp. P4-67, Prevotella sp. PINT, and Bacteroides sp. CAG:927, together with fungal taxa Fusarium vanettenii, Neocallimastix californiae, Fusarium sp. AF-8, Hypoxylon sp. EC38, and Fusarium pseudograminearum, and the involved microbial immune pathways including the "T cell receptor signaling pathway" were higher in the colon of HES goats. The integrated metagenome and host transcriptome analysis revealed that these taxa were associated with enhanced pathogenic ability, antigen processing and presentation, and stimulated T helper 2 cell (TH2)-mediated cytokine secretion functions in the colon of HES goats. Further luminal metabolomics analysis showed increased relative content of chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), and decreased the relative content of hypoxanthine in colonic digesta of HES goats. These altered metabolites contributed to enhancing the expression of TH2-mediated inflammatory-related cytokine secretion including GATA Binding Protein 3 (GATA3), IL-5, and IL-13. Using the linear mixed effect model, the variation of MUC2 biosynthesis explained by the colonic bacteria, bacterial functions, fungi, fungal functions, and metabolites were 21.92, 20.76, 19.43, 12.08, and 44.22%, respectively. The variation of pathology scores explained by the colonic bacterial functions, fungal functions, and metabolites were 15.35, 17.61, and 57.06%. CONCLUSIONS: Our findings revealed that enteral starch overload can trigger interrupted hindgut host-microbiome homeostasis that led to impaired mucosal, destroyed colonic water absorption, and TH2-mediated inflammatory process. Except for the colonic metabolites mostly contribute to the impaired mucosa, the nonnegligible contribution from fungi deserves more future studies focused on the fungal functions in hindgut dysbiosis of young ruminants. Video Abstract.


Sujet(s)
Microbiote , Multi-omique , Animaux , Dysbiose , Ruminants/métabolisme , Ruminants/microbiologie , Capra , Cytokines , Régime alimentaire/médecine vétérinaire , Amidon/composition chimique , Amidon/métabolisme
2.
Int J Pharm ; 631: 122499, 2023 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-36529358

RÉSUMÉ

Aim of this study was to develop a tablet formulation for targeted colonic drug release by implementing two control mechanisms: A pH-sensitive coating layer based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, combined with a matrix based on plant-derived polysaccharide xyloglucan to inhibit drug release after coating removal in the small intestine and to allow microbiome triggered drug release in the colon. In vitro dissolution tests simulated the passage through the entire gastrointestinal tract with a four-stage protocol, including microbial xyloglucanase addition in physiologically relevant concentrations as microbiome surrogate to the colonic dissolution medium. Matrix erosion was monitored in parallel to drug release by measurement of reducing sugar equivalents resulting from xyloglucan hydrolysis. Limited drug release in gastric and small intestinal test stages and predominant release in the colonic stage was achieved. The xyloglucan matrix controlled drug release after dissolution of the enteric coating through the formation of a gummy polysaccharide layer at the tablet surface. Matrix degradation was dependent on enzyme concentration in the colonic medium and significantly accelerated drug release resulting in erosion-controlled release process. Drug release at physiologically relevant enzyme concentration was completed within the bounds of colonic transit time. The dual control concept was applicable to two drug substances with different solubility, providing similar release rates in colonic environment containing xyloglucanase. Drug solubility mechanistically affected release, with diffusion of caffeine, but not of 5-ASA, contributing to the overall release rate out of the matrix tablet.


Sujet(s)
Chimie pharmaceutique , Systèmes de délivrance de médicaments , Chimie pharmaceutique/méthodes , Comprimés/métabolisme , Côlon/métabolisme , Solubilité , Polyosides , Concentration en ions d'hydrogène
3.
J Anim Sci ; 1012023 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-36562268

RÉSUMÉ

The present study evaluated the effects of dietary medium-chain fatty acid (MCFA) and Bacillus on growth performance, nutrient digestibility, antioxidant capacity, colonic fermentation, and microbiota of weaning piglets. A total of 400 weaned piglets were randomly divided into 4 treatments, with 10 replicates per treatment and 10 pigs per replicate. The treatment included: basal diet (control, CON), basal diet with 0.588 g/kg MCFA (MCF), basal diet with 1.3 × 109 CFU/kg Bacillus (BAC), and basal diet with 0.588 g/kg MCFA and 1.3 × 109 CFU/kg Bacillus (SYN). Compared with CON group, the average daily gain of MCF and SYN in the early (1 to 9 d) and whole stage (1 to 36 d) of trail were improved (P < 0.05), the feed to gain ratio of MCF in later (10 to 36 d) and whole stage of trial were decreased (P < 0.05), and the diarrhea rate of SYN in the early stage (1 to 9 d) of trial decreased (P < 0.05). The digestibility of dry matter, ether extract, acid detergent fiber digestibility of MCF were decreased (P < 0.05) compared with CON. The serum d-lactic acid in MCF, BAC, and SYN were lower (P < 0.05) compared with CON group. Compared with CON group, the contents of total antioxidant capacity, superoxide dismutase, and glutathione peroxidase were greater (P < 0.05), whereas the content of malondialdehyde and the contents of colonic isobutyrate and isovalerate were lower (P < 0.05) in MCF. The microbial Shannon and Simpson diversity was lower in MCF (P < 0.05) than that in BAC and SYN. The relative abundance of Prevotella was greater (P < 0.05), whereas the Treponema and Oscillibacter were lower (P < 0.05) in MCF than that in BAC and SYN. In addition, the metabolic pathways of bacteria such as pentose phosphate pathway, adenosine nucleotides degradation II were enhanced (P < 0.05), whereas the pathways such as incomplete reductive TCA cycle, and TCA cycle IV (2-oxoglutarate decarboxylase) were decreased (P < 0.05) in MCF compared with BAC. The results indicated that dietary MCFA and Bacillus in combination improved the intestinal barrier function of piglets by changing the intestinal microbiota and its metabolic function, and finally alleviated the diarrhea rate in early weaning stage and improved growth performance in whole trial period. In addition, MCFA was effective in improving feed efficiency and antioxidant capacity of piglets.


Weaning is the most stressful stage in the growth of piglets. Weaning stress can reduce the feed intake of piglets, cause diarrhea and even death of piglets, and finally result in economic losses to livestock production. To alleviate the weaning stress of piglets after the prohibition of antibiotics in feed, this study evaluated the effect and mechanism of medium-chain fatty acid (MCFA) and Bacillus in combination on regulating the intestinal microbiota balance and health status of weaned piglets. It was found that dietary MCFA and Bacillus in combination improved the intestinal barrier function of piglets by changing the intestinal microbial community and metabolic pathway encoded by bacteria, and finally alleviated the diarrhea rate in the early weaning stage and improved the growth performance in whole trial period. In addition, MCFA was effective in improving feed efficiency and antioxidant capacity of piglets.


Sujet(s)
Bacillus , Microbiome gastro-intestinal , Suidae , Animaux , Compléments alimentaires/analyse , Antioxydants/métabolisme , Sevrage , Régime alimentaire , Acides gras/métabolisme , Diarrhée/médecine vétérinaire , Aliment pour animaux/analyse
4.
Am J Clin Nutr ; 116(4): 943-952, 2022 10 06.
Article de Anglais | MEDLINE | ID: mdl-35728042

RÉSUMÉ

BACKGROUND: A low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet is increasingly used to manage symptoms in irritable bowel syndrome (IBS). Although this approach may alter the colonic microbiome, the nature of these changes has not been comprehensively synthesized. OBJECTIVES: The aim of this study was to conduct a systematic review with meta-analysis of randomized controlled trials examining the impact of a low FODMAP diet on the composition and function of the microbiome in patients with IBS. METHODS: A systematic search was conducted for randomized controlled trials evaluating the effects of a low FODMAP diet on the colonic microbiome in patients with IBS in MEDLINE, EMBASE, CENTRAL, and Web of Science from inception to April 2022. Outcomes included diversity of the microbiome, specific bacterial abundances, fecal SCFA concentration, and fecal pH. For fecal SCFA concentrations and pH, meta-analyses were performed via a random-effects model. RESULTS: Nine trials involving 403 patients were included. There were no clear effects of the low FODMAP diet on diversity of the microbiome. A low FODMAP diet consistently led to lower abundance of Bifidobacteria, but there were no clear effects on diversity of the microbiome or abundances of other specific taxa. There were no differences in total fecal SCFA concentration between the low FODMAP diet and control diets (standardized mean difference: -0.25; 95% CI: -0.63, 0.13; P = 0.20), nor were there differences for fecal concentrations of specific SCFAs or fecal pH. CONCLUSIONS: In patients with IBS, the effects of a low FODMAP diet on the colonic microbiome appear to be specific to Bifidobacteria with no consistent impacts on other microbiome metrics, including diversity, fecal SCFA concentrations, and fecal pH. Further, adequately powered trials are needed to confirm these findings.This review was registered at https://www.crd.york.ac.uk/prospero/ as CRD42020192243.


Sujet(s)
Syndrome du côlon irritable , Microbiote , Bifidobacterium , Régime alimentaire , Régime pauvre en glucides , Diholoside/effets indésirables , Fermentation , Humains , Oses , Oligosaccharides
5.
Front Vet Sci ; 9: 686902, 2022.
Article de Anglais | MEDLINE | ID: mdl-35300220

RÉSUMÉ

The pathological mechanisms of gastrointestinal disorders, including inflammatory bowel disease (IBD), in pigs are poorly understood. We report the induction of intestinal inflammation in heat-stressed (HS) pigs, fecal microbiota transplantation from pigs to mice, and explain the role of microorganisms in IBD. 24 adult pigs were subjected to HS (34 ± 1 °C; 75-85% relative humidity for 24h) while 24 control pigs (CP) were kept at 25 ± 3°C and the same humidity. Pigs were sacrificed on days 1, 7, 14, 21. Colonic content microbiome analyses were conducted. Pseudo-germ-free mice were fed by gavage with fecal microbiota from HS-pigs and CP to induce pig-like responses in mice. From 7 d, HS-pigs exhibited fever and diarrhea, and significantly lower colonic mucosal thickness, crypt depth/width, and goblet cell number. Compared with each control group, the concentration of cortisol in the peripheral blood of HS pigs gradually increased, significantly so on days 7, 14, and 21 (P < 0.01). While the concentration of LPS in HS pigs' peripheral blood was significantly higher on days 7, 14 (P < 0.01), and 21 (P < 0.05) compared with that of the control group. The colonic microbiome composition of HS-pigs was different to that of CP. By day 14, opportunistic pathogens (e.g., Campylobacterales) had increased in HS-pigs. The composition of the colonic microbiome in mice administered feces from HS-pigs was different from those receiving CP feces. Bacteroides were significantly diminished, Akkermansia were significantly increased, and intestinal damage and goblet cell numbers were higher in mice that received HS-pig feces. Moreover, we verified the relevance of differences in the microbiota of the colon among treatments. Heat stress promotes changes in gut microbiome composition, which can affect the colonic microbial structure of mice through fecal microbiota transplantation; the molecular mechanisms require further investigation. This study enhanced our understanding of stress-induced inflammation in the colon and the increase in diarrhea in mammals subjected to prolonged HS. Our results provide useful information for preventing or ameliorating deficits in pig production caused by prolonged exposure to high temperatures.

6.
Front Vet Sci ; 7: 585730, 2020.
Article de Anglais | MEDLINE | ID: mdl-33195612

RÉSUMÉ

Differences in sanitary conditions, as model to induce differences in subclinical immune stimulation, affect the growth performance and nutrient metabolism in pigs. The objective of the present study was to evaluate the colonic microbiota and the colonic and systemic metabolome of female pigs differing in health status induced by sanitary conditions. We analyzed blood and colon digesta metabolite profiles using Nuclear Magnetic Resonance (1H NMR) and Triple quadrupole mass spectrometry, as well as colonic microbiota profiles. 1H NMR is a quantitative metabolomics technique applicable to biological samples. Weaned piglets of 4 weeks of age were kept under high or low sanitary conditions for the first 9 weeks of life. The microbiota diversity in colon digesta was higher in pigs subjected to low sanitary conditions (n = 18 per treatment group). The abundance of 34 bacterial genera was higher in colon digesta of low sanitary condition pigs, while colon digesta of high sanitary status pigs showed a higher abundance for four bacterial groups including the Megasphaera genus (p < 0.003) involved in lactate fermentation. Metabolite profiles (n = 18 per treatment group) in blood were different between both groups of pigs. These different profiles suggested changes in general nutrient metabolism, and more specifically in amino acid metabolism. Moreover, differences in compounds related to the immune system and responses to stress were observed. Microbiome-specific metabolites in blood were also affected by sanitary status of the pigs. We conclude that the microbiome composition in colon and the systemic metabolite profiles are affected by sanitary conditions and related to suboptimal health. These data are useful for exploring further relationships between health, metabolic status and performance and for the identification of biomarkers related to health (indices) and performance.

7.
Biochem Pharmacol ; 180: 114151, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32679124

RÉSUMÉ

Obesity is intimately associated with diet and dysbiosis of gut microorganisms but anxiolytics, widely used in treatment of psychiatric conditions, frequently result in weight gain and associated metabolic disorders. We are interested in effects of the anxiolytic etifoxine, which has not been studied with respect to weight gain or effects on gut microorganisms. Here we induced obesity in mice by feeding a high-fat diet but found that intraperitoneal administration of etifoxine resulted in weight loss and decreased serum cholesterol and triglycerides. Obese mice had increased hepatic transcripts associated with lipid metabolism (cyp7a1, cyp27a1, abcg1 and LXRα) and inflammatory factors (TNFα and IL18) but these effects were reversed after etifoxine treatment other than cyp7a1. Taxonomic profiles of the organisms from the caecum were generated by 16S rRNA gene sequencing and Obese and etifoxine mice show differences by diversity metrics, Differential Abundance and functional metagenomics. Organisms in genus Oscillospira and genera from Lachnospiraceae family and Clostridiales order are higher in Control than Obese and at intermediate levels with etifoxine treatment. With respect to community metabolic potential, etifoxine mice have characteristics similar to Control and particularly with respect to metabolism of butanoate, sphingolipid, lipid biosynthesis and xenobiotic metabolism. We suggest mechanisms where-by etifoxine influences processes of host, such as on bile acid synthesis, and microbiota, such as signalling from production of butanoate and sphingosine, resulting in decreased cholesterol, lipids and inflammatory factors. We speculate that the indirect effect of etifoxine on microbial composition is mediated by microbial ß-glucuronidases that metabolise excreted etifoxine glucuronides.


Sujet(s)
Côlon/effets des médicaments et des substances chimiques , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Obésité/traitement médicamenteux , Oxazines/pharmacologie , Oxazines/usage thérapeutique , Prise de poids/effets des médicaments et des substances chimiques , Animaux , Anxiolytiques/pharmacologie , Anxiolytiques/usage thérapeutique , Côlon/microbiologie , Côlon/physiologie , Alimentation riche en graisse/effets indésirables , Modèles animaux de maladie humaine , Microbiome gastro-intestinal/physiologie , Mâle , Souris , Souris de lignée C57BL , Obésité/étiologie , Obésité/physiopathologie , Prise de poids/physiologie , Perte de poids/effets des médicaments et des substances chimiques , Perte de poids/physiologie
8.
mSphere ; 5(3)2020 05 06.
Article de Anglais | MEDLINE | ID: mdl-32376698

RÉSUMÉ

The chemical structures of soluble fiber carbohydrates vary from source to source due to numerous possible linkage configurations among monomers. However, it has not been elucidated whether subtle structural variations might impact soluble fiber fermentation by colonic microbiota. In this study, we tested the hypothesis that subtle structural variations in a soluble polysaccharide govern the community structure and metabolic output of fermenting microbiota. We performed in vitro fecal fermentation studies using arabinoxylans (AXs) from different classes of wheat (hard red spring [AXHRS], hard red winter [AXHRW], and spring red winter [AXSRW]) with identical initial microbiota. Carbohydrate analyses revealed that AXSRW was characterized by a significantly shorter backbone and increased branching compared with those of the hard varieties. Amplicon sequencing demonstrated that fermentation of AXSRW resulted in a distinct community structure of significantly higher richness and evenness than those of hard-AX-fermenting cultures. AXSRW favored OTUs within Bacteroides, whereas AXHRW and AXHRS favored Prevotella Accordingly, metabolic output varied between hard and soft varieties; higher propionate production was observed with AXSRW and higher butyrate and acetate with AXHRW and AXHRS This study showed that subtle changes in the structure of a dietary fiber may strongly influence the composition and function of colonic microbiota, further suggesting that physiological functions of dietary fibers are highly structure dependent. Thus, studies focusing on interactions among dietary fiber, gut microbiota, and health outcomes should better characterize the structures of the carbohydrates employed.IMPORTANCE Diet, especially with respect to consumption of dietary fibers, is well recognized as one of the most important factors shaping the colonic microbiota composition. Accordingly, many studies have been conducted to explore dietary fiber types that could predictably manipulate the colonic microbiota for improved health. However, the majority of these studies underappreciate the vastness of fiber structures in terms of their microbial utilization and omit detailed carbohydrate structural analysis. In some cases, this causes conflicting results to arise between studies using (theoretically) the same fibers. In this investigation, by performing in vitro fecal fermentation studies using bran arabinoxylans obtained from different classes of wheat, we showed that even subtle changes in the structure of a dietary fiber result in divergent microbial communities and metabolic outputs. This underscores the need for much higher structural resolution in studies investigating interactions of dietary fibers with gut microbiota, both in vitro and in vivo.


Sujet(s)
Bactéries/métabolisme , Glucides/composition chimique , Fibre alimentaire/analyse , Microbiome gastro-intestinal , Bactéries/classification , Bactéries/isolement et purification , Métabolisme glucidique , Régime alimentaire , Fermentation , Humains , Xylanes/composition chimique
9.
Curr Top Microbiol Immunol ; 421: 303-318, 2019.
Article de Anglais | MEDLINE | ID: mdl-31123894

RÉSUMÉ

Microbes within the gastrointestinal tract communicate with each other and with the host, which has profound effects on health and disease development. Only now, it is becoming apparent that how and when we acquire our own unique collection of "gut microbes" and also how we choose to maintain them is fundamental to our health. Helicobacter pylori is the most common bacterial infection worldwide, colonizing around half of the world's population, and is the major risk factor for gastric adenocarcinoma. More recently, it has also been shown to have some beneficial effects in terms of protecting against the development of other diseases. Here, we review the current knowledge on how H. pylori has shaped gastrointestinal microbiota colonization and the host immune system with specific focus on the impact of H. pylori on the various microbiome niches of the gastrointestinal tract. We discuss how the presence of H. pylori influences the physiology of three major regions within the gastrointestinal tract-specifically the oesophagus, stomach and colon. We pay particular attention to the role of H. pylori under chronic inflammatory conditions including the development of cancer. With increased incidence of diseases such as eosinophilic oesophagitis, oesophageal adenocarcinoma and squamous cell carcinoma being attributed to the decline in H. pylori, their disease pathogenesis in light of changing H. pylori colonization is also discussed.


Sujet(s)
Microbiome gastro-intestinal/immunologie , Microbiome gastro-intestinal/physiologie , Infections à Helicobacter/immunologie , Infections à Helicobacter/microbiologie , Helicobacter pylori/immunologie , Helicobacter pylori/pathogénicité , Système immunitaire/immunologie , Système immunitaire/microbiologie , Côlon/immunologie , Côlon/microbiologie , Oesophage/immunologie , Oesophage/microbiologie , Helicobacter pylori/physiologie , Humains , Estomac/immunologie , Estomac/microbiologie
10.
J Nutr ; 146(3): 474-83, 2016 Mar.
Article de Anglais | MEDLINE | ID: mdl-26843585

RÉSUMÉ

BACKGROUND: A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. OBJECTIVE: The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. METHODS: Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. RESULTS: Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. CONCLUSION: Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease.


Sujet(s)
Régime alimentaire , Protéines alimentaires/administration et posologie , Microbiome gastro-intestinal , Transcriptome , Animaux , ADN bactérien/isolement et purification , Régulation négative , Enterococcus/isolement et purification , Escherichia/isolement et purification , Fèces/microbiologie , Analyse de profil d'expression de gènes , Mâle , Mucines/métabolisme , ARN ribosomique 16S/isolement et purification , Rats , Rat Wistar , Ruminococcus/isolement et purification , Shigella/isolement et purification , Streptococcus/isolement et purification
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE