Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 434
Filtrer
1.
Materials (Basel) ; 17(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39124454

RÉSUMÉ

Quasi-static and dynamic tensile tests on aluminum-hydroxide-enhanced ethylene propylene diene monomer (EPDM) coatings were conducted using a universal testing machine and a Split Hopkinson Tension Bar (SHTB) over a strain rate range of 10-3 to 103 s-1. This comprehensive study explored the tensile performance of enhanced EPDM coatings in solid rocket motors. The results demonstrated a significant impact of strain rate on the mechanical properties of EPDM coatings. To capture the hyperelastic and viscoelastic characteristics of EPDM coatings at large strains, the Ogden hyperelastic model was used to replace the standard elastic component to develop an enhanced Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model. The model parameters were fitted using a particle swarm optimization (PSO) algorithm. The improved constitutive model's predictions closely matched the experimental data, accurately capturing stress-strain responses and inflection points. It effectively predicts the tensile behavior of aluminum-hydroxide-enhanced EPDM coatings within a 20% strain range and a wide strain rate range.

2.
Materials (Basel) ; 17(15)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39124504

RÉSUMÉ

GH4720Li is an advanced nickel-based alloy celebrated for its remarkable high-temperature strength. This study aimed to investigate the dynamic recrystallization (DRX) behavior of novel GH4720Li superalloys microalloyed with 0.3Y via hot compression tests. A constitutive model was formulated to simulate the DRX behavior. Utilizing the stress-strain curve, the activation energy for the alloy was determined using both the Arrhenius model and the Z-parameter equation, resulting in 1117.916 kJ/mol. The microstructure evolution analysis conducted revealed that lower strain rates at elevated temperatures effectively hindered the occurrence of DRX. Conversely, the increase in the strain rate promoted DRX, producing uniform, equiaxial grains. Recrystallization calculations, along with validation experiments, demonstrated the efficacy of the Avrami model in establishing a DRX model for the alloy during hot deformation. This model accurately quantified DRX percentages under varying deformation parameters, showcasing strong agreement with the microstructure test results. The predictive capability afforded by the developed models offers valuable insights for optimizing the alloy's forging process. During the compression of the novel GH4720Li superalloy, DRX initiates when the dislocation density in a specific region surpasses a critical threshold. Concurrently, dislocation accumulation near the grain boundaries exceeds that within the grains themselves, highlighting that newly formed DRXed grains primarily emerge along the deformed grain boundaries.

3.
J Mech Behav Biomed Mater ; 159: 106685, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39173497

RÉSUMÉ

Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.

4.
Sci Rep ; 14(1): 18615, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39127807

RÉSUMÉ

This study presents a 3D pick-rock contact calculation method for conical picks, aiming to develop a predictive method with high accuracy and lithological tolerance for peak cutting force (PCF). The method is based on the projection profile method and D. L. Sikarskie stress distribution function. By integrating Griffith's theory with rock damage constitutive model, the energy relationship between the rock fracturing process and crack propagation process is analyzed. Furthermore, in order to accurately correct the PCF, the energy correction function (C-Kf) is proposed to calculate the damage intensity index (Ke), which accounts for the relationship between rock brittleness and rock damage elastic-plastic energy. To validate the method, it is compared with full-scale cutting tests and three existing models, and statistical analysis confirms its high lithological tolerance and accuracy, the present model has the highest R2 of 0.90404, which is at least 12.5% higher relative to the mainstream models. Moreover, incorporating Ke into the method further enhances its predictive capability.

5.
J Biomech ; 174: 112268, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39141961

RÉSUMÉ

Premature birth poses a challenge to public health, with one in ten babies being born prematurely worldwide. The pathological distension of the uterus can create tension in the uterine wall, triggering contractions that may lead to birth, including premature birth. While there has been an increase in the use of computational models to study pregnancy in recent years, ethical challenges have limited research on the mechanical properties of the uterus during gestation. This study proposes a biomechanical model based on a stretch-driven growth mechanism to describe uterine evolution during the second half of the gestational period. The constitutive model employed is anisotropic, reflecting the presence of fibers in uterine tissue, and it is also considered incompressible. The geometric model representing the uterine body was derived from truncated ellipsoids, subject to intrauterine pressure as loading. Simulation results indicate that the proposed model is effective in reproducing growth patterns documented in the literature, such as simultaneous increases in intrauterine volume and uterine tissue volume, accompanied by a reduction in uterine wall thickness within limits reported in experimental data.


Sujet(s)
Modèles biologiques , Utérus , Humains , Femelle , Utérus/physiologie , Grossesse , Phénomènes biomécaniques , Simulation numérique
6.
Heliyon ; 10(15): e35245, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39170443

RÉSUMÉ

Filling paste in deep roadways is significantly affected by groundwater, especially high pore water pressure, which increases the complexity and variability of the filling paste's mechanical properties. To explore the creep characteristics and long-term stability of filling paste under varying pore water pressure, the MTS815.03 test system is used to conduct creep tests under different pore water pressures and stress. Then the creep deformation of the filling paste under the complex pressure field of static pore water pressures is analyzed. Finally, through the one-to-one correspondence between the numerical simulation of the creep model and the characteristic points of the creep curve, a method for determining the creep parameters under the complex pressure field of static pore water pressures is proposed. Results show that the creep test curves of filling paste under different pore water pressures and stress are in good agreement with the model curves. This shows that the creep constitutive model in this research can better reflect the whole process of creep deformation of filling paste. The result also verifies the rationality of the proposed method to determine creep model parameters. The newly proposed creep model can effectively compensate for the traditional Nishihara model, which is inability to reflect the acceleration of creep and can more accurately describe the creep characteristics of the primary and steady-state creep stages.

7.
Sci Rep ; 14(1): 15207, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956294

RÉSUMÉ

The creep characteristics and potential deformation patterns of gangue backfill material are crucial in backfill mining operations. This study utilizes crushed gangue from the Gangue Yard in Fuxin City as the research material. An in-house designed, large-scale, triaxial gangue compaction test system was used. Triaxial compaction creep tests were conducted on gangue materials with varying particle size distributions. Analysis was performed based on different particle sizes, stresses, and confinement pressures. The study investigates the creep characteristics of the gangue under different conditions and explores the underlying causes. It reveals the relationship between the creep deformation of gangue materials and the passage of time. Mathematical methods are applied to develop a triaxial compaction creep power law model for gangue backfill materials. Finally, the creep results are fitted using an empirical formula approach.

8.
Polymers (Basel) ; 16(13)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39000748

RÉSUMÉ

This study investigates the storage life of particle-filled polymer composites (PFPCs) under the influence of aging effects. High-temperature accelerated aging tests were conducted at 60 °C, 70 °C, and 80 °C for various days to analyze the impact of aging time and temperature on the mechanical behavior of the materials. A predictive model for crosslink density was established using the Arrhenius equation, and the relationship between crosslink density and relaxation modulus was determined based on polymer physics theory. On this basis, a viscoelastic constitutive model that incorporates aging effects was developed. Structural analyses of a PFPC column with a length of 2.3 m and outer diameter of 1.8 m were performed using the UMAT subroutine in ABAQUS. Subsequently, a safety margin assessment method based on dewetting strain was employed to predict the storage life of the PFPC column. The results indicate that the aging viscoelastic constitutive model effectively characterizes the hardening effects caused by aging in the composites during storage. The storage life for the PFPC column considering aging effects decreases from 22 years to 19 years compared to models that ignore such effects. This approach provides a reference for estimating the storage life of PFPC columns considering aging effects.

9.
Materials (Basel) ; 17(14)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39063716

RÉSUMÉ

Ni-based superalloys are widely used in aerospace applications. However, traditional constitutive equations often lack the necessary accuracy to predict their high-temperature behavior. A novel constitutive model, utilizing Taylor series expansions and partial derivatives, is proposed to predict the high-temperature flow behavior of a nickel-based superalloy. Hot compression tests were conducted at various strain rates (0.01 s-1, 0.1 s-1, 1 s-1, and 10 s-1) and temperatures (850 °C to 1200 °C) to gather comprehensive experimental data. The performance of the new model was evaluated against classical models, specifically the Arrhenius and Hensel-Spittel (HS) models, using metrics such as the correlation coefficient (R), root mean square error (RMSE), sum of squared errors (SSE), and sum of absolute errors (SAE). The key findings reveal that the new model achieves superior prediction accuracy with an R value of 0.9948 and significantly lower RMSE (22.5), SSE (16,356), and SAE (5561 MPa) compared to the Arrhenius and HS models. Additionally, the stability of the first-order partial derivative of logarithmic stress with respect to temperature (∂lnσ/∂T) indicates that the logarithmic stress-temperature relationship can be approximated by a linear function with minimal curvature, which is effectively described by a second-degree polynomial. Furthermore, the relationship between logarithmic stress and logarithmic strain rate (∂lnσ/∂lnε˙) is more precisely captured using a third-degree polynomial. The accuracy of the new model provides an analytical basis for finite element simulation software. This helps better control and optimize processes, thus improving manufacturing efficiency and product quality. This study enables the optimization of high-temperature forming processes for current superalloy products, especially in aerospace engineering and materials science. It also provides a reference for future research on constitutive models and high-temperature material behavior in various industrial applications.

10.
Materials (Basel) ; 17(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38998306

RÉSUMÉ

The existing tensile-compression elastoplastic models are not suitable for varies of materials. An accurate constitutive model of the elastoplastic mechanical properties more suitable for 35CrNi3MoVR was produced by optimizing the existing fitting equations based on uniaxial tensile-compression tests, which are able to describe the elastoplastic stress-strain relation and Bauschinger effect varying with the maximum tensile plastic strain. A UMAT subroutine of the constitutive model in ABAQUS was proposed and conducted for FEM calculation. Hydraulic autofrettage tests were carried out under different pressures on thick-walled 35CrNi3MoVR tubes, and the results were compared with those of FEM calculations to further validate the accuracy of the fitting model. The results show that the constructed power function kinematic hardening model can effectively describe the elastoplastic mechanical properties of 35CrNi3MoVR and can be applied to the autofrettage calculation of this material. The comparison among the calculation results of different models proved that the model proposed in this research has better performance compared to other existing models. Taking the Mises stress at the inner surface of the thick-walled tubes as the evaluation criterion, the error of the power function kinematic hardening model reaches less than 3%, decreasing the error by at least 50%.

11.
Materials (Basel) ; 17(13)2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38998398

RÉSUMÉ

Due to their excellent mechanical properties, the carbon fiber-reinforced polymer composites (CFRPs) of thermoplastic resins are widely used, and an accurate constitutive model plays a pivotal role in structural design and service safety. A two-parameter three-dimensional (3D) plastic potential was obtained by considering both the deviatoric deformation and the dilatation deformation associated with hydrostatic stress. The Langmuir function was first adopted to model the plastic hardening behavior of composites. The two-parameter 3D plastic potential, connected to the Langmuir function of plastic hardening, was thus proposed to model the constitutive behavior of the CFRPs of thermoplastic resins. Also, T700/PEEK specimens with different off-axis angles were subjected to tensile loading to obtain the corresponding fracture surface angles of specimens and the load-displacement curves. The two unknown plastic parameters in the proposed 3D plastic potential were obtained by using the quasi-Newton algorithm programmed in MATLAB, and the unknown hardening parameters in the Langmuir function were determined by fitting the effective stress-plastic strain curve in different off-axis angles. Meanwhile, the user material subroutine VUMAT, following the proposed constitutive model, was developed in terms of the maximum stress criterion for fiber failure and the LaRC05 criterion for matrix failure to simulate the 3D elastoplastic damage behavior of T700/PEEK. Finally, comparisons between the experimental tests and the numerical analysis were made, and a fairly good agreement was found, which validated the correctness of the proposed constitutive model in this work.

12.
Materials (Basel) ; 17(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38893892

RÉSUMÉ

High-temperature tensile tests were developed to explore the flow features of an Al-Zn-Mg-Cu alloy. The fracture characteristics and microstructural evolution mechanisms were thoroughly revealed. The results demonstrated that both intergranular fractures and ductile fractures occurred, which affected the hot tensile fracture mechanism. During high-temperature tensile, the second phase (Al2CuMg) at the grain boundaries (GBs) promoted the formation and accumulation of dimples. With the continual progression of high-temperature tensile, the aggregation/coarsening of dimples along GBs appear, aggravating the intergranular fracture. The coalescence and coarsen of dimples are reinforced at higher tensile temperatures or lower strain rates. Considering the impact of microstructural evolution and dimple formation/coarsening on tensile stresses, a physical mechanism constitutive (PMC) equation is herein proposed. According to the validation and analysis, the predictive results were in preferable accordance with the testing data, showing the outstanding reconfiguration capability of the PMC model for high-temperature tensile features in Al-Zn-Mg-Cu alloys.

13.
Materials (Basel) ; 17(11)2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38893979

RÉSUMÉ

The Laasraoui segmented and Arrhenius flow stress model, dynamic recrystallization (DRX) model, grain size prediction model, and hot processing map (HPM) of Fe-Cr-Mo-Mn steels were established through isothermal compression tests. The models and HPM were proven by experiment to be highly accurate. As the deformation temperature decreased or the strain rate increased, the flow stress increased and the grain size of the Fe-Cr-Mo-Mn steel decreased, while the volume fraction of DRX (Xdrx) decreased. The optimal range of the hot processing was determined to be 1050-1200 °C/0.369-1 s-1. Zigzag-like grain boundaries (GBs) and intergranular cracks were found in the unstable region, in which the disordered martensitic structure was observed. The orderly packet martensite was formed in the general processing region, and the mixed structure with incomplete DRX grains was composed of coarse and fine grains. The microstructure in the optimum processing region was composed of DRX grains and the multistage martensite. The validity of the Laasraoui segmented flow stress model, DRX model, grain size prediction model, and HPM was verified by upsetting tests.

14.
Sci Rep ; 14(1): 14722, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926495

RÉSUMÉ

This study explores the hot deformation behavior of Al-Zn-Mg-Cu alloy through uniaxial hot compression (200 °C-450°C) using the Gleeble-1500. True stress-strain curves were corrected, and three models were established: the Arrhenius model, strain compensated (SC) Arrhenius model, and strain compensated recrystallization temperature (RT) segmentation-based (TS-SC) Arrhenius model. Comparative analysis revealed the limited predictive accuracy of the SC Arrhenius model, with a 25.12% average absolute relative error (AARE), while the TS-SC Arrhenius model exhibited a significantly improved to 9.901% AARE. Material parameter calculations displayed variations across the temperature range. The SC Arrhenius model, utilizing an average slope method for parameter computation, failed to consider temperature-induced disparities, limiting its predictive capability. Hot processing map, utilizing the Murty improved Dynamic Materials Model (DMM), indicated optimal conditions for stable forming of the Al-Zn-Mg-Cu alloy. Microstructural analysis revealed MgZn2 precipitation induced by hot deformation, with crystallographic defects enhancing nucleation rates and precipitate refinement.

15.
Technol Health Care ; 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38905066

RÉSUMÉ

BACKGROUND: As a new intelligent polymer material, shape memory polymer (SMP) was a potential orthodontic appliance material. OBJECTIVE: This study aimed to investigate the thermodynamic responses of SMP under different loads via finite element analysis (FEA). METHODS: FEA specimens with a specification of 0.1 × 0.1 × 1 mm were designed. One end of the specimen was fixed, and the other was subjected to displacement load. Different loading, cooling, and heating rates were separately exerted on the specimen in its shape recovery process and used to observe the responses of the SMP constitutive model. Furthermore, specimens with various tensile elongation and sectional areas were simulated and used to elucidate their effect on shape recovering force. RESULTS: The specimens obtained a similar stress of 0.5, 0.44, and 1.07 Mpa for different loading, cooling, and heating rates after a long time. The shape recovering force of specimen increased from 0.0102 to 0.0315 N when the elongation improved from 10% to 40% and to 0.0408 N when the sectional areas were expanded to 0.2 × 0.2 mm. CONCLUSION: The stiffness of SMP was small at a high temperature but large at a low temperature. The effects of the loading, cooling, and heating rates on SMP can be eliminated after a long time. Furthermore, it was possible to increase the recovering force by increasing the elongation or expanding the sectional area of the specimen. The force was quadratically dependent on the elongation ratio.

16.
Sci Total Environ ; 946: 174261, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38925386

RÉSUMÉ

The sequestration of CO2 in coal seams has become an effective way to curb greenhouse-gas emissions. Coal mechanics and permeability properties are key factors affecting the safe sequestration of CO2 in coal seams, and both are significantly affected by the CO2 injection pressure. In this study, triaxial compression-permeability tests were conducted on coal under varying CO2 and limited confining pressures using a measurement system to determine the coupled mechanical properties and adsorption permeability of coal. The effects of CO2 pressure on the mechanical properties and evolution of coal permeability were investigated. A three-dimensional statistical damage constitutive model of coal that considers CO2 adsorption damage was established. The results showed that the stress-strain curve of the coal was divided into four stages. During the first two stages, the amplitudes of the permeability changes were small, whereas at the peak stress point, a permeability "jump" phenomenon occurred, after which an increase in stress resulted in a slower amplitude increase in permeability. The CO2 pressure had an evident damage-deterioration effect on the mechanical properties of the coal samples, and the primary failure characteristic was shearing damage. The higher the CO2 pressure, the higher the degree of internal fragmentation and fracture network complexity of the coal body. During the triaxial compression-permeability experiment, the normalized permeability of the coal samples tended to increase slowly, followed by a rapid increase and back to a slow increase. However, with increasing CO2 pressure, the initial permeability of the coal samples decreased, whereas the normalized permeability increased sharply. The rationality and accuracy of the constitutive model were verified by comparing the established constitutive model and test stress-strain curves of the coal samples. The results of this study can provide theoretical references for CO2 geological storage and facilitate the selection of appropriate CO2 injection pressures.

17.
Sci Rep ; 14(1): 14786, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38926465

RÉSUMÉ

In order to provide suitable material selection for such fluid-solid coupling model tests, orthogonal experimental studies were conducted using iron concentrate powder and barite powder as aggregates, cement as cementitious materials, and gypsum and clay as modifiers. This research showed: (1) The ATC plays a dominant role in controlling the strength indexes and water absorption of the material, and these indexes show a significant decrease with the increase of the bone adhesive ratio. For each level of ATC increase, the compressive strength decreases by 0.2 MPa, the elastic modulus decreases by 10-20 MPa, and the cohesion decreases by 25-45 kPa. (2) Mixing gypsum and cement cannot jointly promote strength growth. (3) With the increase of GTC, the water absorption rate of the material increases, while the softening coefficient and permeability coefficient decrease obviously. Gypsum, which accounts for 4-16% of cement content, can be suitable for studying the hydraulic properties of similar materials for most sedimentary rock. Based on Weibull statistical damage theory, a damage constitutive model for the entire process of rock triaxial compression under the combined action of rainwater infiltration and load was established. Due to the influence of internal pores, the experimental and theoretical results have a certain deviation, the higher the confining pressure, the more obvious the deviation. In addition, the higher the rock strength, the less obvious the deviation caused by pores. This damage model can better describe the progressive failure process of rocks after rainwater infiltration, and can provide theoretical reference for the study of slope stability caused by rainwater infiltration.

18.
Polymers (Basel) ; 16(12)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38931973

RÉSUMÉ

It is difficult for the existing Burgers model to accurately depict the off-axis cyclic drawing process of woven coatings. In this paper, the mechanical deformation of woven PVC (polyvinyl chloride)-coated film at different temperatures is investigated. One-dimensional (1D) and two-dimensional (2D) constitutive models were established to characterize cyclic deformation processes. The 1D model is an improved Burgers model. The effects of the time dependence of the viscosity coefficient and the ratio of elastic to viscous deformation are considered simultaneously. The accuracy of the 1D model for predicting the cyclic nonlinear deformation at different temperatures and loading rates is improved. The 2D model is a nonlinear orthotropic model using polynomials. On the basis of the single-objective genetic algorithm, the inverse algorithm is used to obtain the shear polynomial coefficients in the tension phase and the shear modulus in the unloading phase, which circumvents performing the difficult shear test. UMAT subroutines of off-axis stretching and off-axis cyclic stretching are written separately. The intelligent inverse algorithm program consists of a single-objective genetic algorithm program, a finite element parametric modelling program, and a UMAT subroutine. The simulation results are compared with the off-axis cyclic tensile test data to validate the effectiveness and accuracy of the proposed 2D model for the analysis of the woven PVC-coated films in the tension-shear coupling state.

19.
Polymers (Basel) ; 16(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38932035

RÉSUMÉ

In this study, seven Engineering Geopolymer Composite (EGC) groups with varying proportions were prepared. Rheological, compressive, flexural, and axial tensile tests of the EGC were conducted to study the effects of the water/binder ratio, the cement/sand ratio, and fiber type on its properties. Additionally, a uniaxial tension constitutive model was established. The results indicate that the EGC exhibits early strength characteristics, with the 7-day compressive strength reaching 80% to 92% of the 28-day compressive strength. The EGC demonstrates high compressive strength and tensile ductility, achieving up to 70 MPa and 4%, respectively. The mechanical properties of the EGC improved with an increase in the sand/binder ratio and decreased with an increase in the water/binder ratio. The stress-strain curve of the EGC resembles that of the ECC, displaying a strain-hardening state that can be divided into two stages: before cracking, the matrix primarily bears the stress; after cracking, the slope decreases, and the fiber predominantly bears the stress.

20.
Comput Biol Med ; 178: 108730, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38917535

RÉSUMÉ

BACKGROUND: A promising approach to cuff-less, continuous blood pressure monitoring is to estimate blood pressure (BP) from Pulse Wave Velocity (PWV). However, most existing PWV-based methods rely on empirical BP-PWV relations and have large prediction errors, which may be caused by the implicit assumption of thin-walled, linear elastic arteries undergoing small deformations. Our objective is to understand the BP-PWV relationship in the absence of such limiting assumptions. METHOD: We performed Fluid-Structure Interaction (FSI) simulations of the radial artery and the common carotid artery under physiological flow conditions. In these dynamic simulations, we employed two constitutive models for the arterial wall: the linear elastic model, implying a thin-walled linear elastic artery undergoing small deformations, and the Holzapfel-Gasser-Ogden (HGO) model, accounting for the nonlinear effects of collagen fibers and their orientations on the large arterial deformation. RESULTS: Despite the changing BP, the linear elastic model predicts a constant PWV throughout a cardiac cycle, which is not physiological. The HGO model correctly predicts a positive BP-PWV correlation by capturing the nonlinear deformation of the artery, showing up to 50 % variations of PWV in a cardiac cycle. CONCLUSION: Dynamic FSI simulations reveal that the BP-PWV relationship strongly depends on the arterial constitutive model, especially in the radial artery. To infer BP from PWV, one must account for the varying PWV, a consequence of the nonlinear arterial response due to collagen fibers. Future efforts should be directed towards robust measurement of time-varying PWV if it is to be used to predict BP.


Sujet(s)
Pression sanguine , Modèles cardiovasculaires , Analyse de l'onde de pouls , Humains , Pression sanguine/physiologie , Artère radiale/physiologie , Simulation numérique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE