Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 423
Filtrer
1.
Cardiovasc Res ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39259833

RÉSUMÉ

AIM: Estrogen exerts beneficial cardiovascular effects by binding to specific receptors on various cells to activate nuclear and non-nuclear actions. Estrogen receptor α (ERα) non-nuclear signaling confers protection against heart failure remodeling, involving myocardial cyclic guanosine monophosphate (cGMP) - cGMP-dependent protein kinase G (PKG) activation; however, its tissue-specific role remains elusive. Herein, we examined the cell type-specific role of ERα non-nuclear signaling in estrogen-conferred protection against heart failure. METHODS AND RESULTS: We first assessed the tissue-specific impacts of ERα in estrogen's cardiac benefits, utilizing endothelial ERα deletion (ERαf/f/Tie2Cre+) and myocyte ERα deletion (ERαf/f/αMHCCre+) female mice. Female mice were ovariectomized and the effect of estradiol (E2) was assessed in hearts exposed to 3week pressure-overload (TAC). E2 failed to improve cardiac function in ERαf/f/Tie2Cre+ TAC hearts but provided benefits in ERαf/f/αMHCCre+ TAC hearts, indicating that endothelial ERα is essential. We next assessed the role of non-nuclear signaling in endothelial cells, employing animals with endothelial-specific inactivation of ERα non-nuclear signaling (ERαKI/KI/Tie2Cre+). Female OVX mice were supplemented with E2 and subjected to 3-week TAC. ERαKI/KI/Tie2Cre+ TAC hearts revealed exacerbated cardiac dysfunction and reduced myocardial PKG activity as compared to littermate TAC hearts, which was associated with attenuated myocardial induction of vascular endothelial growth factor (VEGF) and angiogenesis as assessed with CD31-stained capillary density. This phenotype of ERαKI/KI/Tie2Cre+ was rescued by myocardial PKG activation from chronic treatment with soluble guanylate cyclase (sGC) stimulator. We performed co-culture experiments to determine endothelial-cardiomyocyte interactions. VEGF induction by E2 in cardiac myocytes required co-existence of intact endothelial ERα signaling in a NOS-dependent manner. On the other hand, VEGF was induced in myocytes directly with an sGC stimulator in the absence of endothelial cells. CONCLUSIONS: An endothelial estrogen - myocardial cGMP axis stimulates angiogenic response and improves cardiac performance during pressure-overload.

2.
Transl Pediatr ; 13(8): 1378-1394, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39263289

RÉSUMÉ

Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition causing brain injury in newborns with unclear pathogenesis. Cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway and NOD-like receptor protein 3 (NLRP3) mediated pyroptosis are thought to be involved in the pathological process of HIE, but whether these two mechanisms act independently is still unknown. Therefore, we aim to clarify whether there is any interaction between these two pathways and thus synergistically affects the progression of HIE. Methods: The HIE model of neonatal rats was established using the Rice-Vannucci method. The potential therapeutic effect of RU.521 targeting cGAS on HIE was explored through rescue experiment. Twenty-four hours after modeling was selected as observation point, sham + vehicle group, HIE + vehicle group and HIE + RU.521 group were established. A complete medium of BV2 cells was adjusted to a glucose-free medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 4 hours and reoxygenation for 12 to 24 hours. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining was used to observe tissue injury. Immunofluorescence was applied to monitor the expression of cGAS. Real-time quantitative polymerase chain reaction and western blot were utilized to detect the expression of messenger RNA and protein. Results: cGAS expression was increased in brain tissues of neonatal rats with HIE, and mainly localized in microglia. RU.521 administration reduced infarct size and pathological damage in rat HIE. Moreover, blocking cGAS with RU.521 significantly reduced inflammatory conditions in the brain by down-regulating STING expression, decreasing NLRP3 inflammasome activation and reducing microglial pyroptosis both in vivo and in vitro. Besides, RU.521 promoted the switching of BV2 cells towards the M2 phenotype. Conclusions: This study revealed a link between the cGAS/STING pathway and the NLRP3/GSDMD/pyroptosis pathway in neonatal HIE. Furthermore, the small molecule compound RU.521 can negatively regulate cGAS/STING/NLRP3/pyroptosis axis and promote M2 polarization in microglia, which provides a potential therapeutic strategy for the treatment of neuroinflammation in HIE.

3.
Sci Rep ; 14(1): 20859, 2024 09 06.
Article de Anglais | MEDLINE | ID: mdl-39242811

RÉSUMÉ

Mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) gastric cancer (GC) exhibits an immune-active tumor microenvironment (TME) compared to MMR proficient (pMMR)/microsatellite stable/Epstein-Barr virus-negative [EBV (-)] GC. The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered a key regulator of immune cell activation in the TME. However, its significance in regulating the immune-active TME in dMMR/MSI-H GC remains unclear. Here, we demonstrated that tumor cell-intrinsic cGAS-STING was highly expressed in dMMR GC compared to pMMR/EBV (-) GC. The expression of tumor cell-intrinsic STING was significantly and positively associated with the number of CD8+ tumor-infiltrating lymphocytes in GC. Analysis of TCGA datasets revealed that the expression of interferon-stimulated genes and STING downstream T-cell attracting chemokines was significantly higher in MSI-H GC compared to other subtypes of GC with EBV (-). These results suggest that tumor cell-intrinsic STING signaling plays a key role in activating immune cells in the dMMR/MSI-H GC TME and might serve as a novel biomarker predicting the efficacy of immunotherapy for GC treatment.


Sujet(s)
Lymphocytes T CD8+ , Lymphocytes TIL , Protéines membranaires , Instabilité des microsatellites , Transduction du signal , Tumeurs de l'estomac , Microenvironnement tumoral , Tumeurs de l'estomac/génétique , Tumeurs de l'estomac/immunologie , Tumeurs de l'estomac/anatomopathologie , Tumeurs de l'estomac/métabolisme , Humains , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Microenvironnement tumoral/immunologie , Mâle , Femelle , Réparation de mésappariement de l'ADN/génétique , Adulte d'âge moyen , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Régulation de l'expression des gènes tumoraux , Sujet âgé
4.
mBio ; : e0100224, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39230277

RÉSUMÉ

During its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA. IMPORTANCE: Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For Caulobacter crescentus motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.

5.
Acta Pharmacol Sin ; 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39112770

RÉSUMÉ

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

6.
Int Immunol ; 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39213393

RÉSUMÉ

In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic (e.g., cyclic GMP-AMP synthase [cGAS]; retinoic acid-inducible gene-I [RIG-I]-like receptors) and endolysosomal (Toll-like Receptor [TLR]7, -9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.

7.
Pharmacol Ther ; 262: 108708, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39154787

RÉSUMÉ

C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.


Sujet(s)
Système cardiovasculaire , Peptide natriurétique de type C , Humains , Peptide natriurétique de type C/métabolisme , Animaux , Système cardiovasculaire/métabolisme , Système cardiovasculaire/effets des médicaments et des substances chimiques , Maladies cardiovasculaires/physiopathologie , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/traitement médicamenteux
8.
Microbiol Spectr ; : e0122924, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39162502

RÉSUMÉ

Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.

9.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39063044

RÉSUMÉ

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Sujet(s)
GMP cyclique , Souris knockout , Peptide natriurétique de type C , Transduction du signal , Animaux , Peptide natriurétique de type C/métabolisme , Peptide natriurétique de type C/génétique , GMP cyclique/métabolisme , Souris , Mâle , Femelle , Endothélium vasculaire/métabolisme , Endothélium vasculaire/anatomopathologie , Athérosclérose/métabolisme , Athérosclérose/génétique , Athérosclérose/anatomopathologie , Récepteur facteur natriurétique auriculaire/métabolisme , Récepteur facteur natriurétique auriculaire/génétique , Cellules endothéliales/métabolisme , Récepteurs aux lipoprotéines LDL/métabolisme , Récepteurs aux lipoprotéines LDL/génétique , Communication paracrine , Hypertension artérielle/métabolisme , Hypertension artérielle/génétique , Souris de lignée C57BL , Aorte/métabolisme , Aorte/anatomopathologie
10.
Brain Res Bull ; 216: 111036, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39084570

RÉSUMÉ

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the progressive destruction of the neuromuscular junction (NMJ) and the degeneration of motor neurons, eventually leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. NMJs, synaptic connections between motor neurons and skeletal muscle fibers, are extremely fragile in ALS. To determine the effects of early electroacupuncture (EA) intervention on nerve reinnervation and regeneration following injury, a model of sciatic nerve injury (SNI) was first established using SOD1G93A mice, and early electroacupuncture (EA) intervention was conducted at Baihui (DU20), and bilateral Zusanli (ST36). The results revealed that EA increased the Sciatic nerve Functional Index, the structural integrity of the gastrocnemius muscles, and the cross-sectional area of muscle fibers, as well as up-regulated the expression of acetylcholinesterase and facilitated the co-location of α7 nicotinic acetate choline receptors and α-actinin. Overall, these results suggested that EA can promote the repair and regeneration of injured nerves and delay NMJ degeneration in SOD1G93A-SNI mice. Moreover, analysis of the cerebral cortex demonstrated that EA alleviated cortical motor neuron damage in SOD1G93A mice, potentially attributed to the inhibition of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and the release of interferon-ß suppressing the activation of natural killer cells and the secretion of interferon-γ, thereby further inhibiting microglial activation and the expression of inflammatory factors. In summary, EA delayed the degeneration of NMJ and mitigated the loss of cortical motor neurons, thus delaying disease onset, accompanied by alleviation of muscle atrophy and improvements in motor function in SOD1G93A mice.


Sujet(s)
Sclérose latérale amyotrophique , Électroacupuncture , Souris transgéniques , Motoneurones , Jonction neuromusculaire , Animaux , Électroacupuncture/méthodes , Jonction neuromusculaire/anatomopathologie , Jonction neuromusculaire/métabolisme , Motoneurones/anatomopathologie , Motoneurones/physiologie , Souris , Sclérose latérale amyotrophique/thérapie , Sclérose latérale amyotrophique/anatomopathologie , Sclérose latérale amyotrophique/génétique , Modèles animaux de maladie humaine , Mâle , Dégénérescence nerveuse/thérapie , Dégénérescence nerveuse/anatomopathologie , Muscles squelettiques/anatomopathologie , Superoxide dismutase-1/génétique , Superoxide dismutase-1/métabolisme , Nerf ischiatique/traumatismes , Nerf ischiatique/anatomopathologie , Souris de lignée C57BL
11.
Biomark Res ; 12(1): 59, 2024 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-38853246

RÉSUMÉ

BACKGROUND: Pyroptosis belongs to a unique type of programmed cell death among which GSDME is reported to exert anti-tumor immunity. However, the underlying mechanisms of how to boost tumor-infiltrating lymphocytes and whether it could benefit the efficacy of ICIs are still unknown. METHODS: CRC samples were used to analyze its relationship with CD8+T cells. GSDME in mouse CRC cell lines CT26/MC38 was overexpressed. The infiltration of CD8+T cells in grafted tumors was determined by multiplex flow cytometric analysis and immunohistochemistry. Transcriptomic analysis was performed in cell lines to define key signatures related to its overexpression. The mechanism of how mtDNA was released by GSDME-induced mitochondrial damage and activated cGAS-STING pathway was observed. Whether GSDME benefited ICIs and the relationships with the genotypes of CRC patients were investigated. RESULTS: It had favorable prognostic value in CRC and was positively associated with increased number and functionality of CD8+T cells both in human samples and animal models. This was due to mitochondrial damage and activation of cGAS-STING-IFNß pathway for the recruitment of CD8+T cells. Mechanically, GSDME overexpression enhanced N-GSDME level, leading to the mitochondrial damage and mtDNA was released into cytosol. Finally, GSDME benefited with ICIs and exhibited positive relationships with MSI in CRC patients. CONCLUSION: We presented the mechanism of GSDME in anti-tumor immunity through activating cGAS-STING-IFNß axis mediated by mitochondrial damage, leading to more infiltration of CD8+T cells with synergistic efficacy with ICIs.

12.
Sci Rep ; 14(1): 10777, 2024 05 11.
Article de Anglais | MEDLINE | ID: mdl-38734687

RÉSUMÉ

Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.


Sujet(s)
Protéines CLOCK , Troubles chronobiologiques , GMP cyclique , Défaillance cardiaque , Soluble guanylyl cyclase , Animaux , Mâle , Souris , Troubles chronobiologiques/complications , Troubles chronobiologiques/métabolisme , Rythme circadien/physiologie , Protéines CLOCK/métabolisme , Protéines CLOCK/génétique , GMP cyclique/métabolisme , Cyclic GMP-dependent protein kinase type I/métabolisme , Cyclic GMP-dependent protein kinase type I/génétique , Modèles animaux de maladie humaine , Défaillance cardiaque/métabolisme , Défaillance cardiaque/étiologie , Défaillance cardiaque/physiopathologie , Souris de lignée C57BL , Myocytes cardiaques/métabolisme , Phénotype , Transduction du signal , Soluble guanylyl cyclase/métabolisme , Débit systolique
13.
J Am Heart Assoc ; 13(7): e031796, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38533961

RÉSUMÉ

BACKGROUND: Phosphodiesterases degrade cyclic GMP (cGMP), the second messenger that mediates the cardioprotective effects of natriuretic peptides. High natriuretic peptide/cGMP ratio may reflect, in part, phosphodiesterase activity. Correlates of natriuretic peptide/cGMP in patients with heart failure with preserved ejection fraction are not well understood. Among patients with heart failure with preserved ejection fraction in the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction) trial, we examined (1) cross-sectional correlates of circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide)/cGMP ratio, (2) whether selective phosphodiesterase-5 inhibition by sildenafil changed the ratio, and (3) whether the effect of sildenafil on 24-week outcomes varied by baseline ratio. METHODS AND RESULTS: In 212 subjects, NT-proBNP/cGMP ratio was calculated at randomization and 24 weeks. Correlates of the ratio and its change were examined in multivariable proportional odds models. Whether baseline ratio modified the sildenafil effect on outcomes was examined by interaction terms. Higher NT-proBNP/cGMP ratio was associated with greater left ventricular mass and troponin, the presence of atrial fibrillation, and lower estimated glomerular filtration rate and peak oxygen consumption. Compared with placebo, sildenafil did not alter the ratio from baseline to 24 weeks (P=0.17). The effect of sildenafil on 24-week change in peak oxygen consumption, left ventricular mass, or clinical composite outcome was not modified by baseline NT-proBNP/cGMP ratio (P-interaction >0.30 for all). CONCLUSIONS: Among patients with heart failure with preserved ejection fraction, higher NT-proBNP/cGMP ratio associated with an adverse cardiorenal phenotype, which was not improved by selective phosphodiesterase-5 inhibition. Other phosphodiesterases may be greater contributors than phosphodiesterase-5 to the adverse phenotype associated with a high natriuretic peptide/cGMP ratio in HFpEF. REGISTRATION INFORMATION: clinicaltrials.gov. Identifier: NCT00763867.


Sujet(s)
Défaillance cardiaque , Peptide natriurétique cérébral , Humains , Marqueurs biologiques , Études transversales , GMP cyclique , Cyclic Nucleotide Phosphodiesterases, Type 5 , Défaillance cardiaque/diagnostic , Défaillance cardiaque/traitement médicamenteux , Fragments peptidiques , Citrate de sildénafil/pharmacologie , Débit systolique/physiologie
14.
Front Immunol ; 15: 1380517, 2024.
Article de Anglais | MEDLINE | ID: mdl-38515746

RÉSUMÉ

As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.


Sujet(s)
ADN , Nucleotidyltransferases , Nucleotidyltransferases/génétique , Immunité innée , Cytosol , Cytoplasme
15.
Adv Mater ; 36(21): e2313029, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38353366

RÉSUMÉ

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an efficient strategy to improve the therapeutic outcomes of immunotherapy. However, the "constantly active" mode of current STING agonist delivery strategies typically leads to off-target toxicity and hyperimmunity. To address this critical issue, herein a metal-organic frameworks-based nanoagonist (DZ@A7) featuring tumor-specific and near-infrared (NIR) light-enhanced decomposition is constructed for precisely localized STING activation and photodynamic-metalloimmunotherapy. The engineered nanoagonist enabled the generation of mitochondria-targeted reactive oxygen species under NIR irradiation to specifically release mitochondrial DNA (mtDNA) and inhibit the repair of nuclear DNA via hypoxia-responsive drugs. Oxidized tumor mtDNA serves as an endogenous danger-associated molecular pattern that activates the cGAS-STING pathway. Concurrently, NIR-accelerated zinc ions overloading in cancer cells further enhance the cGAS enzymatic activity through metalloimmune effects. By combining the synergistically enhanced activation of the cGAS-STING pathway triggered by NIR irradiation, the engineered nanoagonist facilitated the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes for primary tumor eradication, which also established a long-term anti-tumor immunity to suppress tumor metastasis. Therefore, the developed nanoagonist enabled NIR-triggered, agonist-free, and tandem-amplified activation of the cGAS-STING pathway, thereby offering a distinct paradigm for photodynamic-metalloimmunotherapy.


Sujet(s)
Immunothérapie , Rayons infrarouges , Protéines membranaires , Réseaux organométalliques , Nucleotidyltransferases , Photothérapie dynamique , Photothérapie dynamique/méthodes , Animaux , Protéines membranaires/métabolisme , Nucleotidyltransferases/métabolisme , Souris , Humains , Réseaux organométalliques/composition chimique , Réseaux organométalliques/pharmacologie , Lignée cellulaire tumorale , Espèces réactives de l'oxygène/métabolisme , ADN mitochondrial/métabolisme , Tumeurs/thérapie , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Nanoparticules/composition chimique , Photosensibilisants/composition chimique , Photosensibilisants/pharmacologie , Photosensibilisants/usage thérapeutique
16.
Adv Mater ; 36(23): e2311291, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38408154

RÉSUMÉ

Radiotherapy, a widely used therapeutic strategy for esophageal squamous cell carcinoma (ESCC), is always limited by radioresistance of tumor tissues and side-effects on normal tissues. Herein, a signature based on four core genes of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, is developed to predict prognosis and assess immune cell infiltration, indicating that the cGAS-STING pathway and radiotherapy efficacy are closely intertwined in ESCC. A novel lipid-modified manganese diselenide nanoparticle (MnSe2-lipid) with extraordinarily uniform sphere morphology and tumor microenvironment (TME) responsiveness is developed to simultaneously overcome radioresistance and reduce side-effects of radiation. The uniform MnSe2 encapsulated lipid effectively achieves tumor accumulation. Octadecyl gallate on surface of MnSe2 forming pH-responsive metal-phenolic covalent realizes rapid degradation in TME. The released Mn2+ promotes radiosensitivity by generating reactive oxygen species induced by Fenton-like reaction and activating cGAS-STING pathway. Spontaneously, selenium strengthens immune response by promoting secretion of cytokines and increasing white blood cells, and performs antioxidant activity to reduce side-effects of radiotherapy. Overall, this multifunctional remedy which is responsive to TME is capable of providing radiosensitivity by cGAS-STING pathway-mediated immunostimulation and chemodynamic therapy, and radioprotection of normal tissues, is highlighted here to optimize ESCC treatment.


Sujet(s)
Tumeurs de l'oesophage , Carcinome épidermoïde de l'oesophage , Nanoparticules , Radiotolérance , Carcinome épidermoïde de l'oesophage/traitement médicamenteux , Carcinome épidermoïde de l'oesophage/anatomopathologie , Humains , Tumeurs de l'oesophage/anatomopathologie , Tumeurs de l'oesophage/traitement médicamenteux , Tumeurs de l'oesophage/métabolisme , Radiotolérance/effets des médicaments et des substances chimiques , Animaux , Nanoparticules/composition chimique , Lignée cellulaire tumorale , Souris , Acide gallique/composition chimique , Acide gallique/pharmacologie , Acide gallique/analogues et dérivés , Lipides/composition chimique , Sélénium/composition chimique , Sélénium/pharmacologie , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Radioprotecteurs/pharmacologie , Radioprotecteurs/composition chimique , Manganèse/composition chimique , Radiosensibilisants/composition chimique , Radiosensibilisants/pharmacologie
17.
Int J Immunopathol Pharmacol ; 38: 3946320241229041, 2024.
Article de Anglais | MEDLINE | ID: mdl-38315064

RÉSUMÉ

Neuroinflammation is crucial in the onset and progression of dopaminergic neuron loss in Parkinson's disease (PD). We aimed to determine whether 3-N-Butylphthalide (NBP) can protect against PD by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and the inflammatory response of microglia. MitoSOX/MitoTracker/Hoechst staining was used to detect the levels of mitochondrial reactive oxygen species (ROS) in BV2 cells. Quantitative Real-Time Polymerase Chain Reaction was used to measure the levels of free cytoplasmic mitochondrial DNA (mtDNA) in BV2 cells and mouse brain tissues. Behavioral impairments were assessed using rotarod, T-maze, and balance beam tests. Dopaminergic neurons and microglia were observed using immunohistochemical staining. Expression levels of cGAS, STING, nuclear factor kappa-B (NfκB), phospho- NfκB (p-NfκB), inhibitor of NfκBα (IκBα), and phospho-IκBα (p-IκBα) proteins in the substantia nigra and striatum were detected using Western Blot. NBP decreased mitochondrial ROS levels in rotenone-treated BV2 cells. NBP alleviated behavioral impairments and protected against rotenone-induced microgliosis and damage to dopaminergic neurons in the substantia nigra and striatum of rotenone-induced PD mice. NBP decreased rotenone-induced mtDNA leakage and mitigated neuroinflammation by inhibiting cGAS-STING pathway activation. NBP exhibited a protective effect in rotenone-induced PD models by significantly inhibiting the cGAS-STING pathway. Moreover, NBP can alleviate neuroinflammation, and is a potential therapeutic drug for alleviating clinical symptoms and delaying the progression of PD. This study provided insights for the potential role of NBP in PD therapy, potentially mitigating neurodegeneration, and consequently improving the quality of life and lifespan of patients with PD. The limitations are that we have not confirmed the exact mechanism by which NBP decreases mtDNA leakage, and this study was unable to observe the actual clinical therapeutic effect, so further cohort studies are required for validation.


Sujet(s)
Benzofuranes , Maladie de Parkinson , Humains , Souris , Animaux , Maladie de Parkinson/traitement médicamenteux , Roténone , Inhibiteur alpha de NF-KappaB , Maladies neuro-inflammatoires , Espèces réactives de l'oxygène , Qualité de vie , ADN mitochondrial , Nucleotidyltransferases
18.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38369645

RÉSUMÉ

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Sujet(s)
Encéphale , Cricetulus , Peptides natriurétiques , Animaux , Encéphale/métabolisme , Peptides natriurétiques/métabolisme , Cellules CHO , Récepteur facteur natriurétique auriculaire/métabolisme , Communication paracrine , Ligands , Anguilla/métabolisme , Système endocrine/métabolisme
19.
Burns Trauma ; 12: tkad050, 2024.
Article de Anglais | MEDLINE | ID: mdl-38312740

RÉSUMÉ

Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.

20.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38421179

RÉSUMÉ

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Sujet(s)
Facteur de transcription NF-kappa B , Syndrome de fièvre sévère avec thrombocytopénie , Humains , Facteur de transcription NF-kappa B/métabolisme , Facteur-3 de régulation d'interféron/métabolisme , Transduction du signal/génétique , Immunité innée/génétique , Nucleotidyltransferases/métabolisme , Interférons/métabolisme , Antiviraux , Ubiquitines/métabolisme , Protein-Serine-Threonine Kinases/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE