Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Magn Reson Med ; 92(2): 447-458, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38469890

RÉSUMÉ

PURPOSE: To introduce a tool (TensorFit) for ultrafast and robust metabolite fitting of MRSI data based on Torch's auto-differentiation and optimization framework. METHODS: TensorFit was implemented in Python based on Torch's auto-differentiation to fit individual metabolites in MRS spectra. The underlying time domain and/or frequency domain fitting model is based on a linear combination of metabolite spectroscopic response. The computational time efficiency and accuracy of TensorFit were tested on simulated and in vivo MRS data and compared against TDFDFit and QUEST. RESULTS: TensorFit demonstrates a significant improvement in computation speed, achieving a 165-times acceleration compared with TDFDFit and 115 times against QUEST. TensorFit showed smaller percentual errors on simulated data compared with TDFDFit and QUEST. When tested on in vivo data, it performed similarly to TDFDFit with a 2% better fit in terms of mean squared error while obtaining a 169-fold speedup. CONCLUSION: TensorFit enables fast and robust metabolite fitting in large MRSI data sets compared with conventional metabolite fitting methods. This tool could boost the clinical applicability of large 3D MRSI by enabling the fitting of large MRSI data sets within computation times acceptable in a clinical environment.


Sujet(s)
Algorithmes , Spectroscopie par résonance magnétique , Humains , Spectroscopie par résonance magnétique/méthodes , Simulation numérique , Logiciel , Encéphale/métabolisme , Encéphale/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Reproductibilité des résultats , Traitement d'image par ordinateur/méthodes
2.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-38127336

RÉSUMÉ

Preservatives are added as antimicrobial agents to extend the shelf life of meat. Adding preservatives to meat products can affect their flavor and nutrition. This review clarifies the effects of preservatives on metabolic pathways and network molecular transformations in meat products based on lipidomics, metabolomics and proteomics analyses. Preservatives change the nutrient content of meat products via altering ionic strength and pH to influence enzyme activity. Ionic strength in salt triggers muscle triglyceride hydrolysis by causing phosphorylation and lipid droplet splitting in adipose tissue hormone-sensitive lipase and triglyceride lipase. DisoLipPred exploiting deep recurrent networks and transfer learning can predict the lipid binding trend of each amino acid in the disordered region of input protein sequences, which could provide omics analyses of biomarkers metabolic pathways in meat products. While conventional meat quality assessment tools are unable to elucidate the intrinsic mechanisms and pathways of variables in the influences of preservatives on the quality of meat products, the promising application of omics techniques in food analysis and discovery through multimodal learning prediction algorithms of neural networks (e.g., deep neural network, convolutional neural network, artificial neural network) will drive the meat industry to develop new strategies for food spoilage prevention and control.

3.
Ir J Med Sci ; 192(3): 1401-1409, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-35930139

RÉSUMÉ

BACKGROUND AND PURPOSE: The precise segmentation of the kidneys in computed tomography (CT) images is vital in urology for diagnosis, treatment, and surgical planning. Medical experts can get assistance through segmentation, as it provides information about kidney malformations in terms of shape and size. Manual segmentation is slow, tedious, and not reproducible. An automatic computer-aided system is a solution to this problem. This paper presents an automated kidney segmentation technique based on active contour and deep learning. MATERIALS AND METHODS: In this work, 210 CTs from the KiTS 19 repository were used. The used dataset was divided into a train set (168 CTs), test set (21 CTs), and validation set (21 CTs). The suggested technique has broadly four phases: (1) extraction of kidney regions using active contours, (2) preprocessing, (3) kidney segmentation using 3D U-Net, and (4) reconstruction of the segmented CT images. RESULTS: The proposed segmentation method has received the Dice score of 97.62%, Jaccard index of 95.74%, average sensitivity of 98.28%, specificity of 99.95%, and accuracy of 99.93% over the validation dataset. CONCLUSION: The proposed method can efficiently solve the problem of tumorous kidney segmentation in CT images by using active contour and deep learning. The active contour was used to select kidney regions and 3D-UNet was used for precisely segmenting the tumorous kidney.


Sujet(s)
Tumeurs , Tomodensitométrie , Humains , Tomodensitométrie/méthodes , Abdomen , Rein/imagerie diagnostique , Imagerie tridimensionnelle/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE