Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
1.
Pharmaceutics ; 16(6)2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38931939

RÉSUMÉ

Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens.

2.
J Clin Pharmacol ; 64(7): 849-859, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38436463

RÉSUMÉ

Delpazolid (LCB01-0371) is a novel oxazolidinone derivative with a good safety profile for treating gram-positive pathogenic infections such as Mycobacterium abscessus, a highly pathogenic drug-resistant Mycobacterium. In this study, we evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) of delpazolid after 14 days of multiple oral administration, using data from adult patients with pulmonary tuberculosis. 800 mg once a day, 400 mg twice a day, 800 mg twice a day, and 1200 mg once a day delpazolid for 14 days were tested in 63 patients with pulmonary tuberculosis. For PK blood collection, inpatient and outpatient scheduling were separately implemented. Plasma concentrations of delpazolid were measured at visits 2, 4, 6, and 8 in outpatients, and four sparse blood samples were measured in inpatients. PD models were sequentially fitted using individual PK parameter estimates obtained from PK compartmental models. For PK modeling, 180 plasma concentrations of delpazolid from 56 patients were included. A two-compartment mixed first- and zero-order absorption model best described the time course of plasma concentration. For the PD model, 448 bacterial titer data from 60 patients were used. The time course of bacterial titers (log10 CFU/mL) was described by a model that consists of the growth and killing rate of bacteria with the sigmoid Emax model. The PK-PD simulation suggested that the bacterial titers are the lowest on the 800 mg bid regimen among the four, consistent with observed data, as all regimens substantially decrease. In the dose-response relationship, the effectiveness of delpazolid was suggested.


Sujet(s)
Modèles biologiques , Oxazolidinones , Tuberculose pulmonaire , Humains , Mâle , Femelle , Oxazolidinones/pharmacocinétique , Oxazolidinones/administration et posologie , Oxazolidinones/usage thérapeutique , Adulte , Adulte d'âge moyen , Tuberculose pulmonaire/traitement médicamenteux , Sujet âgé , Antituberculeux/pharmacocinétique , Antituberculeux/usage thérapeutique , Antituberculeux/administration et posologie , Jeune adulte , Relation dose-effet des médicaments , Administration par voie orale
3.
Trials ; 24(1): 382, 2023 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-37280643

RÉSUMÉ

BACKGROUND: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin. METHODS: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course. DISCUSSION: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages. TRIAL REGISTRATION: DECODE was registered in ClinicalTrials.gov before recruitment start on 22 October 2021 (NCT04550832).


Sujet(s)
Oxazolidinones , Tuberculose pulmonaire , Adulte , Humains , Moxifloxacine/effets indésirables , Linézolide , Association de médicaments , Antituberculeux , Oxazolidinones/effets indésirables , Tuberculose pulmonaire/diagnostic , Résultat thérapeutique
4.
Infect Drug Resist ; 16: 279-287, 2023.
Article de Anglais | MEDLINE | ID: mdl-36683910

RÉSUMÉ

Purpose: Unsatisfactory efficacies of currently recommended anti-Mycobacterium abscessus complex (MABC) treatment regimens have led to development of novel drugs to combat MABC infections. In this study, we evaluated in vitro antimicrobial activities of bedaquiline (BDQ) and four oxazolidinones against MABC isolates. Methods: The resazurin microplate assay was performed to determine minimum inhibitory concentrations (MICs) of BDQ and four oxazolidinones, including tedizolid (TZD), sutezolid (SZD), delpazolid (DZD), and linezolid (LZD), against 65 MABC isolates. A checkerboard method was used to investigate efficacies of various antimicrobial drug combinations. Results: BDQ MICs for MABC isolates ranged from <0.031 to 1 µg/mL, while MIC50 and MIC90 values were 0.125 µg/mL and 0.25 µg/mL, respectively. TZD MIC50 and MIC90 values for MABC isolates were 1 µg/mL and 4 µg/mL, respectively, which were fourfold lower than corresponding LZD values (P < 0.001). DZD MIC90 values for MABC isolates was 8 µg/mL, which were 0.5-fold lower than corresponding LZD values (P < 0.01). MICs of BDQ, SZD, and LZD for M. abscessus subspecies massiliense isolates were significantly lower than corresponding MICs for M. abscessus subspecies abscessus isolates (P < 0.05). Notably, use of oxazolidinones (DZD, SZD, LZD, or TZD) with BDQ against MABC isolates led to reduction of the oxazolidinone median MIC range from 4 to 0.125 µg/mL to 1-0.031 µg/mL. Conclusion: These results demonstrated excellent BDQ inhibitory activity against MABC isolates. TZD exhibited stronger antimicrobial efficacy against MABC isolates as compared to efficacies of DZD, SZD, and LZD. Importantly, MICs of oxazolidinones were markedly decreased when they were combined with BDQ, thus suggesting that combinations of BDQ and oxazolidinones may be effective treatments for MABC infections.

5.
Infect Drug Resist ; 14: 4689-4697, 2021.
Article de Anglais | MEDLINE | ID: mdl-34785916

RÉSUMÉ

BACKGROUND: The antimicrobial activities of some new oxazolidinones against slowly growing mycobacteria (SGM) have never been well evaluated. METHODS: We evaluate the in vitro susceptibility of 20 reference strains and 157 clinical isolates, pertaining different SGM species, against four oxazolidinones, ie, delpazolid, sutezolid, tedizolid and linezolid. In addition, the association of linezolid resistance and mutations in 23srRNA, rplC, rplD were also tested. RESULTS: Sutezolid presented the strongest antimicrobial activity against the clinical isolates of M. intracellulare than the other oxazolidinones, with MIC50 at 2 µg/mL and MIC90 at 4 µg/mL. MICs of sutezolid were usually 4- to 8-fold lower than these of linezolid against M. intracellulare and M. avium. The tested isolates of M. kansasii were susceptible to all of the four oxazolidinones. According to the multiple sequence alignment, novel 23srRNA mutations (A2267C and A2266G) in M. intracellulare and rplD mutations (Thr147Ala) in M. avium were identified in this study which have plausible involvement in rendering resistance against linezolid. CONCLUSION: This study showed that sutezolid harbors the strongest inhibitory activity against M. intracellulare, M. avium and M. kansasii in vitro, which provided important insights on the potential clinical application of oxazolidinones for treating SGM infections.

6.
Int J Infect Dis ; 109: 253-260, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34216736

RÉSUMÉ

BACKGROUND: The natural resistance of rapidly growing mycobacteria (RGM) to multiple antibiotics renders the treatment of the infections caused less successful. The objective of this study was to evaluate the in vitro susceptibilities of four oxazolidinones against different RGM species. METHODS: The microplate alamarBlue assay was performed to identify the minimum inhibitory concentrations (MICs) of four oxazolidinones - delpazolid, sutezolid, tedizolid, and linezolid - for 32 reference strains and 115 clinical strains of different RGM species. The MIC breakpoint concentration was defined as 16 µg/ml for linezolid. Next, the gene fragments associated with oxazolidinone resistance were amplified and sequenced, and mutations were defined in contrast with the sequences of the reference strains. RESULTS: Tedizolid showed the strongest inhibitory activity against the Mycobacterium abscessus isolates. Delpazolid exhibited better antimicrobial activity against the Mycobacterium fortuitum isolates when compared to linezolid, with 4-fold lower MIC values. The protein alignment and structure-based analysis showed that there might be no correlation between oxazolidinone resistance and mutations in the rplC, rplD, and 23S rRNA genes in the tested RGM. CONCLUSIONS: Tedizolid had the strongest inhibitory activity against M. abscessus in vitro, while delpazolid presented the best inhibitory activity against M. fortuitum. This provides important insights into the potential clinical application of oxazolidinones to treat RGM infections.


Sujet(s)
Mycobacterium abscessus , Oxazolidinones , Antibactériens/pharmacologie , Pékin , Humains , Linézolide/pharmacologie , Tests de sensibilité microbienne , Oxazolidinones/pharmacologie , Tétrazoles
7.
Med Res Rev ; 41(4): 2350-2387, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-33645845

RÉSUMÉ

The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.


Sujet(s)
Infections à mycobactéries non tuberculeuses , Mycobacterium abscessus , Préparations pharmaceutiques , Antibactériens/pharmacologie , Humains , Tests de sensibilité microbienne , Rifabutine
8.
Med Res Rev ; 40(1): 263-292, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31254295

RÉSUMÉ

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.


Sujet(s)
Antituberculeux/pharmacologie , Évaluation préclinique de médicament , Thérapie moléculaire ciblée , Animaux , Antituberculeux/composition chimique , Essais cliniques comme sujet , Agrément de médicaments , Humains , Relation structure-activité
9.
Article de Anglais | MEDLINE | ID: mdl-29844043

RÉSUMÉ

Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


Sujet(s)
Antituberculeux/pharmacologie , Multirésistance bactérienne aux médicaments/génétique , Régulation de l'expression des gènes bactériens , Gènes bactériens , Linézolide/pharmacologie , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Oxazolidinones/pharmacologie , Substitution d'acide aminé , Chine , Tuberculose ultrarésistante aux médicaments/traitement médicamenteux , Tuberculose ultrarésistante aux médicaments/microbiologie , Humains , Tests de sensibilité microbienne , Mutation , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/croissance et développement , Mycobacterium tuberculosis/isolement et purification , ARN ribosomique 23S/génétique , Études rétrospectives , Tuberculose multirésistante/traitement médicamenteux , Tuberculose multirésistante/microbiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE