Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 141
Filtrer
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38892182

RÉSUMÉ

Cancer immunotherapy using antigen-pulsed dendritic cells can induce strong cellular immune responses by priming cytotoxic T lymphocytes. In this study, we pulsed tumor cell lysates with VP-R8, a cell-penetrating D-octaarginine-linked co-polymer of N-vinylacetamide and acrylic acid (PNVA-co-AA), into the DC2.4 murine dendritic cell line to improve antigen uptake and then determined the anti-tumor effect in tumor-bearing mice. DC2.4 cells were pulsed with the cell lysate of EL4, a murine lymphoma cell line, and VP-R8 to generate the DC2.4 vaccine. For the in vivo study, DC2.4 cells pulsed with EL4 lysate and VP-R8 were subcutaneously injected into the inguinal lymph node to investigate the anti-tumor effect against EL4 and EL4-specific T cell immune responses. VP-R8 significantly improved antigen uptake into DC2.4 compared to conventional keyhole limpet hemocyanin (p < 0.05). The expression of MHC class I, MHC class II, and CD86 in DC2.4 cells significantly increased after pulsing tumor lysates with VP-R8 compared to other treatments (p < 0.05). The intra-lymph node injection of DC2.4 pulsed with both VP-R8 and EL4 lysate significantly decreased tumor growth compared to DC2.4 pulsed with KLH and lysates (p < 0.05) and induced tumor-infiltrating CD8T cells. The DC2.4 vaccine also remarkably increased the population of IFN-gamma-producing T cells and CTL activity against EL4 cells. In conclusion, we demonstrated that VP-R8 markedly enhances the efficiency of dendritic cell-based vaccines in priming robust anti-tumor immunity, suggesting its potential as a beneficial additive for dendritic cell-based immunotherapy.


Sujet(s)
Présentation d'antigène , Vaccins anticancéreux , Cellules dendritiques , Cellules dendritiques/immunologie , Animaux , Vaccins anticancéreux/immunologie , Souris , Lignée cellulaire tumorale , Présentation d'antigène/immunologie , Oligopeptides/composition chimique , Femelle , Souris de lignée C57BL , Peptides de pénétration cellulaire/composition chimique
2.
Front Immunol ; 15: 1393451, 2024.
Article de Anglais | MEDLINE | ID: mdl-38903502

RÉSUMÉ

Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.


Sujet(s)
Cellules dendritiques , Immunothérapie , Tumeurs , Microenvironnement tumoral , Humains , Cellules dendritiques/immunologie , Tumeurs/thérapie , Tumeurs/immunologie , Microenvironnement tumoral/immunologie , Immunothérapie/méthodes , Animaux
3.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38626769

RÉSUMÉ

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Sujet(s)
Antigènes néoplasiques , Vaccins anticancéreux , Carcinome pulmonaire non à petites cellules , Différenciation cellulaire , Cellules dendritiques , Tumeurs du poumon , Lymphocytes T , Vaccination , Humains , Cellules dendritiques/immunologie , Tumeurs du poumon/immunologie , Tumeurs du poumon/anatomopathologie , Vaccins anticancéreux/immunologie , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Carcinome pulmonaire non à petites cellules/thérapie , Mâle , Femelle , Adulte d'âge moyen , Antigènes néoplasiques/immunologie , Différenciation cellulaire/immunologie , Sujet âgé , Lymphocytes T/immunologie
4.
Biomedicines ; 12(4)2024 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-38672110

RÉSUMÉ

Oncolytic viruses and combinatorial immunotherapy for cancer (this Special Issue) are both part of cancer treatment at IOZK. This review focusses on an individual multimodal cancer immunotherapy concept developed by IOZK, Cologne, Germany. The scientific rationale for employing three main components is explained: (i) oncolytic Newcastle disease virus, (ii) modulated electrohyperthermia and (iii) individual tumor antigen and oncolytic virus modified dendritic cell vaccine (IO-VACR). The strategy involves repeated cancer-immunity cycles evoked in cancer patients by systemic oncolytic virus exposure plus hyperthermia pretreatment to induce immunogenic cell death followed by intradermal IO-VACR vaccination. As an example of the experience at IOZK, we present the latest results from combining the immunotherapy with standard treatment of patients suffering from glioblastoma multiforme. The promising clinical results in terms of overall survival benefit of additional individualized multimodal immunotherapy are presented. The cancer-immunity cycle, as introduced 10 years ago, describes key important steps occurring locally at the sites of both tumor and draining lymph nodes. This view is extended here towards systemic events occuring in blood where immunogenic cell death-induced tumor antigens are transported into the bone marrow. For 20 years it has been known that bone marrow is an antigen-responsive organ in which dendritic cells present tumor antigens to T cells leading to immunological synapse formation, tumor antigen-specific T cell activation and memory T cell formation. Bone marrow is known to be the most prominent source of de novo cellular generation in the body and to play an important role for the storage and maintenance of immunological memory. Its systemic activation is recommended to augment cancer-immunity cycles.

5.
Expert Opin Biol Ther ; 24(4): 269-284, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38644655

RÉSUMÉ

INTRODUCTION: Colorectal cancer (CRC) is the second most lethal malignancy worldwide. Immune checkpoint inhibitors (ICIs) benefit only 15% of patients with mismatch repair-deficient/microsatellite instability (dMMR/MSI) CRC. The majority of patients are not suitable due to insufficient immune infiltration. Cancer vaccines are a potential approach for inducing tumor-specific immunity within the solid tumor microenvironment. AREA COVERED: In this review, we have provided an overview of the current progress in CRC vaccines over the past three years and briefly depict promising directions for further exploration. EXPERT OPINION: Cancer vaccines are certainly a promising field for the antitumor treatment against CRC. Compared to monotherapy, cancer vaccines are more appropriate as adjuvants to standard treatment, especially in combination with ICI blockade, for microsatellite stable patients. Improved vaccine construction requires neoantigens with sufficient immunogenicity, satisfactory HLA-binding affinity, and an ideal delivery platform with perfect lymph node retention and minimal off-target effects. Prophylactic vaccines that potentially prevent CRC carcinogenesis are also worth investigating. The exploration of appropriate biomarkers for cancer vaccines may benefit prognostic prediction analysis and therapeutic response prediction in patients with CRC. Although many challenges remain, CRC vaccines represent an exciting area of research that may become an effective addition to current guidelines.


Sujet(s)
Vaccins anticancéreux , Tumeurs colorectales , Humains , Tumeurs colorectales/immunologie , Tumeurs colorectales/prévention et contrôle , Tumeurs colorectales/thérapie , Tumeurs colorectales/génétique , Vaccins anticancéreux/usage thérapeutique , Vaccins anticancéreux/immunologie , Animaux , Microenvironnement tumoral/immunologie
6.
Vaccine ; 42(3): 512-521, 2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-38184395

RÉSUMÉ

Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS. Nevertheless, synthetic dsRNAs were also shown to stimulate different receptors on innate immune cells and to activate immune responses through induction of cytokines via toll-like receptors. In our study we investigated the potential of Larifan as dsRNA of natural origin to stimulate maturation of DCs with proinflammatory (possible antitumoral) activity and to compare these immunostimulatory properties between Larifan's fractions with different molecular lengths. To explore the suitability of this product for therapy, it is necessary to study the properties of its different fractions and compare them to standard adjuvants. We investigated the effect of Larifan's fractions on immune system stimulation in vivo by monitoring the survival time of tumor-bearing mice. Murine DCs produced in vitro using Larifan and its fractions together with tumor antigens during production were also characterized. All Larifan fractions resulted in inducing high expression of immunogenic markers CD40, CD80, CD86, CCR7, MHC II and lower secretion of the immunosuppressive cytokine IL-10, compared to the maturation with LPS in mDCs. The lowest expression of tolerogenic gene Ido1 and highest expression of the immunogenic genes Clec7a, Tnf, Icosl, Il12rb2, Cd209a were characteristic to the unfractionated dsRNA and short fraction FR15. In the mouse model the best overall survival rate was observed in mice treated with medium-length FR9 and FR15. We can state that both Larifan and its fractions were superior to LPS as vaccine adjuvants in stimulating phenotype and functional activity of mature DCs. DCs maturation using these factors induces a valuable anticancer immune response.


Sujet(s)
Bactériophages , Tumeurs , Humains , Souris , Animaux , Adjuvants vaccinaux , Lipopolysaccharides , Cellules dendritiques , Cytokines/métabolisme , Adjuvants immunologiques/métabolisme , Immunité , Récepteurs à l'interleukine-12 , Composés chimiques organiques
7.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37647347

RÉSUMÉ

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Sujet(s)
Tumeurs , Vaccins , Souris , Animaux , Lipopolysaccharides/pharmacologie , Granzymes/métabolisme , Leptine/métabolisme , Immunité cellulaire , Facteur de croissance transformant bêta/métabolisme , Interféron gamma/métabolisme , Modèles animaux , Tumeurs/métabolisme , Interleukine-12 , Vaccins/métabolisme , Cellules dendritiques , Facteurs de transcription Forkhead/métabolisme
8.
Hum Vaccin Immunother ; 20(1): 2296735, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38148629

RÉSUMÉ

This mini-review explores recent advancements in cancer vaccines that target Wilms' tumor (WT1). Phase I/II trials of WT1 peptide vaccines have demonstrated their safety and efficacy against various cancers. Early trials employing HLA class I peptides evolved through their combination with HLA class II peptides, resulting in improved clinical outcomes. Additionally, WT1-targeted dendritic cell vaccines have exhibited favorable results. Studies focusing on hematological malignancies have revealed promising outcomes, including long-term remission and extended survival times. The combination of vaccines with immune checkpoint inhibitors has shown synergistic effects. Current preclinical developments are focused on enhancing the effectiveness of WT1 vaccines, underscoring the necessity for future large-scale Phase III trials to further elucidate their efficacy.


Sujet(s)
Vaccins anticancéreux , Tumeurs du rein , Tumeur de Wilms , Humains , Protéines WT1 , Tumeur de Wilms/thérapie , Peptides
9.
Cureus ; 15(11): e49221, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-38143707

RÉSUMÉ

INTRODUCTION: It is a well-known fact that anti-tumor immunity is a crucial long-term survival factor in cancer. Wilms' tumor 1 (WT1) dendritic cell vaccine therapy (WT1-DC) is an immuno-cell therapy that has been implemented against various cancers as a tumor-specific immunotherapy targeting the common cancer antigen WT1. METHODS: Seven doses of WT1-DC vaccine were administered to six patients, three of whom had stage IV lung cancer with metastases and the other three had stage IV pancreatic cancer with metastases, all of whom were receiving chemotherapy and had similar physical conditions. Their immune response was assessed using delayed-type hypersensitivity (DTH) and immune profile status (IPS) such as blood neutrophil percentage, lymphocyte percentage, and neutrophil-to-lymphocyte (N/L) ratio. RESULTS: In lung cancer, DTH increased with repeated DC administration, and IPS improved with it, whereas in pancreatic cancer, DTH did not increase, and IPS worsened from the fifth inoculation. Fever in the 37° range was observed after DC administration in lung cancer, but not in pancreatic cancer. CONCLUSION: These results suggest that DTH and IPS are correlated in dynamics and that DTH is a good indicator of the state of anti-tumor immunity. Since IPS is a prognostic factor in advanced cancer, the magnitude of DTH due to WT1-DC inoculation is a useful indicator to estimate the patient's prognosis. Although DTH is an extremely simple test, its clinical significance has not been fully investigated. The present study demonstrates the importance of DTH in cancer treatment with WT1-DC.

10.
Cancer Cell Int ; 23(1): 270, 2023 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-37951911

RÉSUMÉ

BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response. In this study, we investigated the potential of using DCs loaded with the MAGE-A2 long peptide to activate T cell cytotoxicity toward PCa cell lines. METHODS: Here, we generated DCs from monocytes and thoroughly characterized their phenotypic and functional properties. Then, DCs were pulsed with MAGE-A2 long peptide (LP) as an antigen source, and monitored for their transition from immature to mature DCs by assessing the expression levels of several costimulatory and maturation molecules like CD14, HLA-DR, CD40, CD11c, CD80, CD83, CD86, and CCR7. Furthermore, the ability of MAGE-A2 -LP pulsed DCs to stimulate T cell proliferation in a mixed lymphocyte reaction (MLR) setting and induction of cytotoxic T cells (CTLs) in coculture with autologous T cells were examined. Finally, CTLs were evaluated for their capacity to produce interferon-gamma (IFN-γ) and kill PCa cell lines (PC3 and LNCaP). RESULTS: The results demonstrated that the antigen-pulsed DCs exhibited a strong ability to stimulate the expansion of T cells. Moreover, the induced CTLs displayed substantial cytotoxicity against the target cells and exhibited increased IFN-γ production during activation compared to the controls. CONCLUSIONS: Overall, this innovative approach proved efficacious in targeting PCa cell lines, showcasing its potential as a foundation for the development and improved PCa cancer immunotherapy.

11.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-37896948

RÉSUMÉ

Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.

12.
Vaccines (Basel) ; 11(10)2023 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-37896962

RÉSUMÉ

Dendritic cell (DC) vaccines can stimulate the immune system to target cancer antigens, making them a promising therapy in immunotherapy. Clinical trials have shown limited effectiveness of DC vaccines, highlighting the need to enhance the immune responses they generate. Innate lymphoid cells (ILCs) are a diverse group of innate leukocytes that produce various cytokines and regulate the immune system. These cells have the potential to improve immunotherapies. There is not much research on how group 2 ILCs (ILC2s) communicate with DC vaccines. Therefore, examining the roles of DC vaccination in immune responses is crucial. Our research analyzed the effects of DC vaccination on the ILC2 populations and their cytokine production. By exploring the relationship between ILC2s and DCs, we aimed to understand how this could affect DC-based immunotherapies. The results showed an increase in the number of ILC2s in the local draining lymph node and spleen of tumor-free mice, as well as in the lungs of mice challenged with tumors in a pulmonary metastasis model. This suggests a complex interplay between DC-based vaccines and ILC2s, which is further influenced by the presence of tumors.

13.
Front Immunol ; 14: 1259562, 2023.
Article de Anglais | MEDLINE | ID: mdl-37781367

RÉSUMÉ

Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.


Sujet(s)
Tumeurs du cerveau , Vaccins anticancéreux , Glioblastome , Gliome , Humains , Cellules dendritiques , Vaccins anticancéreux/usage thérapeutique , Microenvironnement tumoral
14.
Adv Sci (Weinh) ; 10(30): e2303006, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37638719

RÉSUMÉ

Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.


Sujet(s)
Calcium , Vaccins , Lymphocytes T CD8+ , Antigènes , Adjuvants immunologiques , Cytokines , Lysosomes , Antiviraux , Cellules dendritiques
15.
Cytotherapy ; 25(11): 1229-1235, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37486281

RÉSUMÉ

BACKGROUND AIMS: With the aim of strengthening the scientific evidence of immune-cell therapy for cancer and further examining its safety, in October 2015, our hospital jointly established the Cancer Immune-Cell Therapy Evaluation Group (CITEG) with 39 medical facilities nationwide. METHODS: Medical information, such as patients' background characteristics, clinical efficacy and therapeutic cell types obtained from each facility, has been accumulated, analyzed and evaluated by CITEG. In this prospective study, we analyzed the adverse events associated with immune-cell therapy until the end of September 2022, and we presented our interim safety evaluation. RESULTS: A total of 3839 patients with malignant tumor were treated with immune-cell therapy, with a median age of 64 years (range, 13-97 years) and a male-to-female ratio of 1:1.08 (1846:1993). Most patients' performance status was 0 or 1 (86.8%) at the first visit, and 3234 cases (84.2%) were advanced or recurrent cases, which accounted for the majority. The total number of administrations reported in CITEG was 31890, of which 960 (3.0%) showed adverse events. The numbers of adverse events caused by treatment were 363 (1.8%) of 19661 administrations of αßT cell therapy, 9 of 845 administrations of γδT-cell therapy (1.1%) and 10 of 626 administrations of natural killer cell therapy (1.6%). The number of adverse events caused by dendritic cell (DC) vaccine therapy was 578 of 10748 administrations (5.4%), which was significantly larger than those for other treatments. Multivariate analysis revealed that αßT cell therapy had a significantly greater risk of adverse events at performance status 1 or higher, and patients younger than 64 years, women or adjuvant immune-cell therapy had a greater risk of adverse events in DC vaccine therapy. Injection-site reactions were the most frequently reported adverse events, with 449 events, the majority of which were associated with DC vaccine therapy. Among all other adverse events, fever (228 events), fatigue (141 events) and itching (131 events) were frequently reported. In contrast, three patients had adverse events (fever, abdominal pain and interstitial pneumonia) that required hospitalization, although they were weakly related to this therapy; rather, it was considered to be the effect of treatment for the primary disease. CONCLUSIONS: Immune-cell therapy for cancer was considered to be a safe treatment without serious adverse events.


Sujet(s)
Tumeurs , Humains , Mâle , Femelle , Adolescent , Jeune adulte , Adulte , Adulte d'âge moyen , Sujet âgé , Sujet âgé de 80 ans ou plus , Études prospectives , Tumeurs/thérapie , Immunothérapie adoptive , Résultat thérapeutique
16.
J Neurooncol ; 163(1): 173-183, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37129737

RÉSUMÉ

PURPOSE: Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS: Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS: Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION: Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Imagerie par résonance magnétique multiparamétrique , Vaccins , Humains , Glioblastome/imagerie diagnostique , Glioblastome/thérapie , Antigène KI-67 , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/thérapie , Cellules dendritiques
17.
Med Oncol ; 40(6): 179, 2023 May 15.
Article de Anglais | MEDLINE | ID: mdl-37188900

RÉSUMÉ

Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and "ML221 + DC vaccine". After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-ß), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin-eosin staining. The efficiency of combination therapy with "ML221 + DC vaccine" was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-ß in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.


Sujet(s)
Tumeurs du sein , Tumeurs du foie , Animaux , Femelle , Souris , Apeline/génétique , Apeline/métabolisme , Récepteur de l'apeline/génétique , Récepteur de l'apeline/métabolisme , Tumeurs du sein/thérapie , Cellules dendritiques/métabolisme , Facteur de croissance fibroblastique de type 2 , Interleukine-9 , Matrix metalloproteinase 2 , Matrix metalloproteinase 9 , Facteur de croissance transformant bêta , , Facteur de croissance endothéliale vasculaire de type A/génétique , Facteur de croissance endothéliale vasculaire de type A/métabolisme
18.
Adv Med Sci ; 68(1): 157-168, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-37003235

RÉSUMÉ

PURPOSE: Prostaglandin E2 (PGE2), a product of cyclooxygenase (COX) pathway of arachidonic acid, exerts inhibitory impacts on dendritic cell (DC) activity to repress anti-tumor immune responses. Therefore, targeting COX during DC vaccine generation may enhance DC-mediated antitumor responses. We aimed to investigate the impacts of DC vaccine treated with celecoxib (CXB), a selective COX2 inhibitor, on some T cell-related parameters. MATERIALS AND METHODS: Breast cancer (BC) was induced in BALB/c mice, and then they received DC vaccine treated with lipopolysaccharide (LPS-mDCs), LPS with a 5 â€‹µM dose of CXB (LPS/CXB5-mDCs) and LPS with a 10 â€‹µM dose of CXB (LPS/CXB10-mDCs). The frequency of splenic Th1 and Treg cells and amounts of IFN-γ, IL-12 and TGF-ß production by splenocytes, as well as, the expression of Granzyme-B, T-bet and FOXP3 in tumors were determined using flow cytometry, ELISA, and real-time PCR, respectively. RESULTS: Compared with untreated tumor group (T-control), treatment with LPS/CXB5-mDCs and LPS/CXB10-mDCs decreased tumor growth (P â€‹= â€‹0.009 and P â€‹< â€‹0.0001), escalated survival rate (P â€‹= â€‹0.002), increased the frequency of splenic Th1 cells (P â€‹= â€‹0.0872, and P â€‹= â€‹0.0155), increased the IFN-γ (P â€‹= â€‹0.0003 and P â€‹= â€‹0.0061) and IL-12 (P â€‹= â€‹0.001 and P â€‹= â€‹0.0009) production by splenocytes, upregulated T-bet (P â€‹= â€‹0.062 and P â€‹< â€‹0.0001) and Granzyme-B (P â€‹= â€‹0.0448 and P â€‹= â€‹0.4485), whereas decreased the number of Treg cells (P â€‹= â€‹0.0014, and P â€‹= â€‹0.0219), reduced the amounts of TGF-ß production by splenocytes (P â€‹= â€‹0.0535 and P â€‹= â€‹0.0169), and reduced the expression of FOXP3 (P â€‹= â€‹0.0006 and P â€‹= â€‹0.0057) in comparison with T-control group. CONCLUSIONS: Our findings show that LPS/CXB-treated DC vaccine potently modulated antitumor immune responses in a mouse BC model.


Sujet(s)
Tumeurs , Vaccins , Animaux , Souris , Célécoxib/pharmacologie , Célécoxib/usage thérapeutique , Granzymes , Lipopolysaccharides , Interleukine-12 , Immunité cellulaire , Facteur de croissance transformant bêta , Cellules dendritiques , Vaccination , Facteurs de transcription Forkhead
19.
J Nanobiotechnology ; 21(1): 87, 2023 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-36915084

RÉSUMÉ

Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.


Sujet(s)
Vaccins anticancéreux , Nanoparticules , Tumeurs , Vaccins , Animaux , Souris , Humains , Tumeurs/traitement médicamenteux , Nanoparticules/composition chimique , Immunothérapie/méthodes , Cellules dendritiques , Vaccins anticancéreux/usage thérapeutique
20.
Biomedicines ; 11(2)2023 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-36830775

RÉSUMÉ

BACKGROUND: The addition of dendritic cell vaccines (DCV) to NAC could induce immune responses in those patients with residual disease (RD) by transforming the tumor microenvironment. METHODS: Core diagnostic biopsies and surgical specimens from 80 patients (38 in the vaccinated group plus NAC (VG) and 42 in the control group (CG, treated only with NAC) were selected. We quantify TILs (CD8, CD4 and CD45RO) using immunohistochemistry and the automated cellular imaging system (ACIS III) in paired samples. RESULTS: A CD8 rise in TNBC samples was observed after NAC plus DCV, changing from 4.48% in the biopsy to 6.70% in the surgical specimen, not reaching statistically significant differences (p = 0.11). This enrichment was seen in up to 67% of TNBC patients in the experimental arm as compared with the CG (20%). An association between CD8 TILs before NAC (4% cut-off point) and pathological complete response in the VG was found in the univariate and multivariate analysis (OR = 1.41, IC95% 1.05-1.90; p = 0.02, and OR = 2.0, IC95% 1.05-3.9; p = 0.03, respectively). CONCLUSION: Our findings suggest that patients with TNBC could benefit from the stimulation of the antitumor immune system by using DCV together with NAC.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...